1. 经典的电力系统潮流计算机算法有哪几种,比较其特点
高斯-赛德尔法
牛顿-拉夫逊法(直角坐标与极坐标)
PQ分解法
保留非线性潮流算法
混合坐标系的潮流计算
随便找一本电力系统书都有详细介绍的
2. 电力系统潮流计算,求解释!
电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。
3. 电力系统潮流计算的潮流计算的发展史
利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点:
(1)算法的可靠性或收敛性
(2)计算速度和内存占用量
(3)计算的方便性和灵活性
电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。因此其数学模型不包含微分方程,是一组高阶非线性方程。非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。
在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基础的高斯-赛德尔迭代法(一下简称导纳法)。这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。
20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。
阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了计算速度。
克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称牛顿法)。牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。
在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显着的提高,迅速得到了推广。
牛顿法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。
近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。
4. 谁知道一个简单电力系统的牛顿拉夫逊法的分析!要一个简单的,有具体过程和编程!
牛顿-拉夫逊法早在50年代末就已应用于求解电力系统潮流问题,但作为一种实用的,有竞争力的电力系统潮流计算方法,则是在应用了稀疏矩阵技巧和高斯消去法求修正方程后。牛顿-拉夫逊法是求解非线性代数方程有效的迭代计算。
1.3MATLAB概述
目前电子计算机已广泛应用于电力系统的分析计算,潮流计算是其基本应用软件之一。现有很多潮流计算方法。对潮流计算方法有五方面的要求:(1)计算速度快(2)内存需要少(3)计算结果有良好的可靠性和可信性(4)适应性好,亦即能处理变压器变比调整、系统元件的不同描述和与其它程序配合的能力强(5)简单。
MATLAB是一种交互式、面向对象的程序设计语言,广泛应用于工业界与学术界,主要用于矩阵运算,同时在数值分析、自动控制模拟、数字信号处理、动态分析、绘图等方面也具有强大的功能。
MATLAB程序设计语言结构完整,且具有优良的移植性,它的基本数据元素是不需要定义的数组。它可以高效率地解决工业计算问题,特别是关于矩阵和矢量的计算。MATLAB与C语言和FORTRAN语言相比更容易被掌握。通过M语言,可以用类似数学公式的方式来编写算法,大大降低了程序所需的难度并节省了时间,从而可把主要的精力集中在算法的构思而不是编程上。
另外,MATLAB提供了一种特殊的工具:工具箱(TOOLBOXES).这些工具箱主要包括:信号处理(SIGNAL PROCESSING)、控制系统(CONTROL SYSTEMS)、神经网络(NEURAL NETWORKS)、模糊逻辑(FUZZY LOGIC)、小波(WAVELETS)和模拟(SIMULATION)等等。不同领域、不同层次的用户通过相应工具的学习和应用,可以方便地进行计算、分析及设计工作。
MATLAB设计中,原始数据的填写格式是很关键的一个环节,它与程序使用的方便性和灵活性有着直接的关系。
原始数据输入格式的设计,主要应从使用的角度出发,原则是简单明了,便于修改。
2.1 电力系统的基本概念
2.1.1电力系统
(1)电力系统:发电机把机械能转化为电能,电能经变压器和电力线路输送并分配到用户,在那里经电动机、电炉和电灯等设备又将电能转化为机械能、热能和光能等。这些生产、变换、输送、分配、消费电能的发电机、变压器、变换器、电力线路及各种用电设备等联系在一起组成的统一整体称为电力系统。
(2)电力网:电力系统中除发电机和用电设备外的部分。
(3)动力系统:电力系统和“动力部分”的总和。
“动力部分”:包括火力发电厂的锅炉、汽轮机、热力网和用电设备,水力发电厂的水库和水轮机,核电厂的反应堆等。
2.1.2电力系统的负荷和负荷曲线
(1)电力系统的负荷:系统中千万个用电设备消费功率的总和,包括异步电动机、同步电动机、电热炉、整流设备、照明设备等若干类。
(2)电力系统的供电负荷:综合用电负荷加上电力网中损耗的功率。
(3)电力系统的发电负荷:供电负荷加上发电厂本身的消耗功率。
(4)各用电设备的有功功率和无功功率随受电电压和系统频率的变化而变化,其变化规律不尽相同,综合用电负荷随电压和频率的变化规律是各用电负荷变化规律的合成。
(5)负荷曲线:某一时间段内负荷随时间而变化的规律。
(6)按负荷种类可分有功功率负荷和无功功率负荷;按时间长短可分为日负荷和年负荷曲线;按计量地点可分为个别用户、电力线路、变电所、发电厂以至整个系统的负荷曲线。将上述三种分类相结合,就确定了某一种特定的负荷曲线。不同行业的有功功率日负荷曲线差别很大。负荷曲线对电力系统的运行又很重要的意义,它是安排日发电计划,确定各发电厂发电任务以及确定系统运行方式等的重要依据。
2.2 电力系统的基本元件
2.2.1 发电机
现代电力工业中,无论是火力发电、水力发电或核能发电,几乎全部采用同步交流发电机。电机的电枢布置在定子上,励磁绕组布置在转子上,作为旋转式磁极。同步发电机的转速(转/MIN)和系统频率f(HZ)之间有着严格的关系,即n=60f/p式中p为电机的极对数。
根据转子结构型式的不同,分为隐极式和凸极式发电机,前者转子没有显露出来的磁极,后者则有。
转子的励磁型式有直流励磁系统和可控硅励磁系统,后者利用同轴交流励磁机或由同步发电机本身发出的交流电,经整流后供给转子。直流励磁机有换向问题,故其制造容量受到限制,所以,在大容量发电机中均可采用可控硅励磁系统。
2.2.2 电力变压器
电力变压器是电力系统中广泛使用的升压和降压设备。据统计,电力系统中变压器的安装总容量约为发电机安装容量的6-8倍。按用途,电力变压器可分为升压变压器、降亚变压器、配电变压器和联络变压器。按相数分,变压器可分为单相式和三相式。按每相线圈分,又有双绕组和三绕组之分。按线圈耦合的方式,可分为普通变压器和自耦变压器。
2.2.3 电力线路
(1)架空线路:由导线、避雷针、杆塔、绝缘子和金具等构成。
(2)电缆线路:由导线、绝缘层、包护层等构成。
2.2.4 无功功率补偿设备
主要的无功功率补偿设备有同步调相机、电力电容器和静止补偿器。
2.3 电力系统元件的数学模型
2.3.1 电力线路的等值电路
在电力系统分析中,一般只考虑电力线路两侧端口的电压和电流,把电力线路作为无源双口网络处理。
线路的双口网络方程:
Z=B=*L*
2.3.2 变压器的等值电路
(1)双绕组变压器等值电路
(2)三绕组变压器等值电路
2.3.3 同步发电机的数学模型
2.3.4 电力系统负荷
2.3.5 多级电压电力系统的等值电路
2.4 电力系统稳态运行分析
2.4.1 电力线路的电压损耗与功率损耗
2.4.2 变压器中的功率损耗与电压损耗
2.4.3 辐射形网络的分析计算
辐射形电力网的特点是各条线路有明确的始端与末端。辐射形电力网的分析计算就是利用已知的负荷、节点电压来求取未知的节点电压、线路功率分布、功率损耗及始端输出功率。
辐射形电力网的分析计算,根据已知条件的不同分两种
1 已知末端功率与电压:即 从末端逐级往上推算,直至求得各要求的量。
2 已知末端功率、始端电压:末端可理解成一负荷点,始端为电源点或电压中枢点。采用迭代法。
(1)假设末端电压为线路额定电压,利用第一种方法求得始端功率及全网功率分布。
(2)用求得的线路始端功率和已知的线路始端电压,计算线路末端电压和全网功率分布。
(3)用第(2)步求得的线路末端电压计算线路始端功率和全网功率分布,如求得的各线路功率与前一次相同计算的结果相差小于允许值,就可以认为本步求得的线路电压和全网功率分布为最终计算结果。否则,返回第二步重新进行计算。
2.4.4 复杂电力系统潮流计算
电力系统潮流计算始对复杂电力系统正常和故障条件下稳态运行状态的计算。潮流计算的目标始求取电力系统在给定运行方式下的节点电压和功率分布,用以检查系统各元件是否过负荷、各点电压是否满足要求、功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。因此,潮流计算是电力系统计算分析中的一种最基本的计算。
潮流计算结果的用途,例如用于电力系统稳定研究、安全估计或最优潮流等也对潮流计算的模型和方法有直接影响。
2.5 电力系统潮流计算机算法
2.5.1电力系统潮流计算机算法概述
2.5.1.1 导纳矩阵的形成
2.5.1.2 节点类型
(1)PV节点:柱入有功功率P为给定值,电压也保持在给定数值。
(2)PQ节点:诸如有功功率和无功功率是给定的。
(3)平衡节点:用来平衡全电网的功率。选一容量足够大的发电机担任平衡全电网功率的职责。
平衡节点的电压大小与相位是给定的,通常以它的相角为参考量,即取其电压相角为0。一个独立的电力网中只设一个平衡点。
2.5.1.3 高斯迭代法
2.5.2 牛顿-拉夫逊法
2.5.2.1 原理
2.5.2.2 基本步骤
基本步骤:
(1)形成节点导纳矩阵
(2)将各节点电压设初值U,
(3)将节点初值代入相关求式,求出修正方程式的常数项向量
(4)将节点电压初值代入求式,求出雅可比矩阵元素
(5)求解修正方程,求修正向量
(6)求取节点电压的新值
(7)检查是否收敛,如不收敛,则以各节点电压的新值作为初值自第3步重新开始进行狭义次迭代,否则转入下一步
(8)计算支路功率分布,PV节点无功功率和平衡节点柱入功率。
2.5.2.3 注意事项
2.5.2.4 程序流程框图
2.6 软件设计
2.6.1 方案选择及说明
2.6.2 方案求解
2.6.3 MATLAB编程说明及元件描述
2.6.4 程序
#include<stdio.h>
struct powernode
{
float pi;
float qi;
int i;
float vi;
};
struct powernode wg[20];
struct powernode wl[20];
struct linedata
{
int i;
int j;
float r;
float x;
float y; /*包括变压器变比*/
float k; /*只用作标析变压器,变压器变比仍在y中*/
};
struct linedata zl[20];
struct linedata t3; /*临时数组*/
static double y[][3]; /*在matrixform中应用*/
int t=0;
int t2,ti,tj; /*临时记数单元*/
float temp;
float tx,tr,YK; /*中间工作单元(在matrixform中应用)*/
double GIJ,BIJ; /*中间工作单元(在matrixform中应用)*/
int N; /*总节点数*/
int zls;
int Q,V,PVS,PVD;
int GS;
int LS;
float vo;
float Eps;
static double GII[]={0},BII[]={0},YDS[]={0},YDZ[]={0},B[]={0};/*添加数组*/
/*因子表形成时定义的数据*/
struct pvdata
{
float vis;
int i;
};
static struct pvdata pv[]={0};
datain()
{
clrscr();
printf("program runningn" );
printf("n");
printf("please input the aggregate to the system note");/*总节点数*/
scanf("%d",&N);
printf("n");
printf(" PQ note IN ALL?");/*总节点数*/
scanf("%d",&Q);
PVS=(N-Q)-1;
printf("n");
printf("them input the aggregate to the system power line");
scanf("%d",&zls);/*输电线路数和变压器的总数*/
printf("n");
printf("electromotor node in all :?");/*发电机节点总数*/
scanf("%d",&GS);
printf("n");
printf("load node in all : ?");/*负荷节点总数*/
scanf("%d",&LS);
printf("n");
printf("average electric voltage");/*平均电压*/
scanf("%f",vo);
printf("n");
printf("n");
printf("please input the date messagen");
printf("follow the format like it: i,j,r,x,y,kn");
do{
t++;
scanf("%d,%d,%f,%f,%f",&zl[t].i,&zl[t].j,&zl[t].r,&zl[t].x,&zl[t].y,&zl[t].k);
printf("processing....n");
if(zl[t].i>zl[t].j)
{
temp=zl[t].i;
zl[t].i=zl[t].j;
zl[t].j=temp;
/* if(zl[t].k!=1) */ /*要考虑归算问题不????*/
}
printf("data you input is:n " );
printf("%d,%d,%f,%f,%f",zl[t].i,zl[t].j,zl[t].r,zl[t].x,zl[t].y,zl[t].k);
}while(zl[t].i!=0&&zl[t].j==0);
for(t2=t;t>0;t--) /*冒泡法排序*/
{
for(;t2>0;t2--)
{
if(zl[t2].i<zl[t2-1].i)
{
t3.i=zl[t2].i;t3.j=zl[t2].j;t3.r=zl[t2].r;t3.x=zl[t2].x;t3.y=zl[t2].y;t3.k=zl[t2].k;
zl[t2].i=zl[t2-1].i;zl[t2].j=zl[t2-1].j;zl[t2].r=zl[t2-1].r;zl[t2].x=zl[t2-1].x;zl[t2].y=zl[t2-1].y;zl[t2].k=zl[t2-1].k;
zl[t2-1].i=t3.i;zl[t2-1].j=t3.j;zl[t2-1].r=t3.r;zl[t2-1].x=t3.x;zl[t2-1].y=t3.y;zl[t2-1].k=t3.k;
}
else if(zl[t2].i==zl[t2-1].i)
{if(zl[t2].j<zl[t2-1].j)
{
t3.i=zl[t2].i;t3.j=zl[t2].j;t3.r=zl[t2].r;t3.x=zl[t2].x;t3.y=zl[t2].y;t3.k=zl[t2].k;
zl[t2].i=zl[t2-1].i;zl[t2].j=zl[t2-1].j;zl[t2].r=zl[t2-1].r;zl[t2].x=zl[t2-1].x;zl[t2].y=zl[t2-1].y;zl[t2].k=zl[t2-1].k;
zl[t2-1].i=t3.i;zl[t2-1].j=t3.j;zl[t2-1].r=t3.r;zl[t2-1].x=t3.x;zl[t2-1].y=t3.y;zl[t2-1].k=t3.k;
}
}
}
}
printf("n");
t=0;
printf("please input wg~!n");
do
{
scanf("%f,%f,%d,%f",&wg[t].pi,&wg[t].qi,&wg[t].i,&wg[t].vi);
t++;
}while(t!=GS);ti=0;
for(t=0;t<GS;t++){if(wg[t].vi<o){pv[ti].vis=labs(wg[t].vi);pv[ti].i=wg[t].i;ti++;}}
t2=0;
printf("please input WL~!n");
do
{
scanf("%f,%f,%d,%f",&wl[t2].pi,&wl[t2].qi,&wl[t2].i,&wl[t2].vi);
t2++;
}while(t2!=LS);
for(t=0;t<LS;t++){if(wl[t].vi<o){pv[ti].vis=labs(wl[t].vi);pv[ti].i=wl[t].i;ti++;}}
}
matrixform()
{
for(t=1;t<N;t++)
{
GII[t]=0;
BII[t]=0;
YDS[t]=0;
}
for(t2=1;t<zls;t2++)
{
ti=labs(zl[t2].i);
tj=labs(zl[t2].j);
tr=zl[t2].r;
tx=zl[t2].x;
temp=ldexp(tr,1)+ldexp(tx,1);
GIJ=tr/temp; BIJ=tx/temp;
y[t2][1]=-GIJ;
y[t2][2]=-BIJ;
y[t2][3]=tj;
GII[ti]=GII[ti]+GIJ; BII[ti]=BII[ti]+BIJ;
GII[tj]=GII[tj]+GIJ; BII[tj]=BII[tj]+BIJ;
YDS[ti]=YDS[ti]+1;
}
YDZ[1]=1;
for(t=1;t<N-1;t++)
{
YDZ[t+1]=YDZ[t]+YDS[t];
} /*矩阵型成第一部完成*/
/*矩阵型成第二部开始*/
for(t2=1;t<zls;t2++)
{ /*.k只用作变压器的标析,变压器变比仍在y中*/
ti=zl[t2].i;tj=zl[t2].j;YK=zl[t2].y;
if(ti<0||tj<0)
{ if(ti<0)
ti=labs(ti);
else
ti=labs(tj);
GIJ=y[t2][1];BIJ=y[t2][2];
GII[t2]=GII[t2]+(1-1/YK/YK)*GIJ;
BII[t2]=BII[t2]+(1-1/YK/YK)*BIJ;
y[t2][1]=GIJ/YK;
y[t2][2]=BIJ/YK;
}
else
GIJ=0;
BIJ=YK/2;
SY(tr); /*这个东东要调用,实现节点累计自导纳*/
SY(tj); /*SY的过程是完成向一个节点累计相应自导纳的实部和虚部*/
}
}
int sign,ld,k2,x,im,ai; /*k2控制台开关,负荷静态特性开关*/
static float fd[]={0};
unsigned AF[1];
static int u[]={0}; /*???????????怎么实现?来自那里???????*/
divisorform()
{
/*暂时不知道LD PVD 等的作用……待善*/
PVD=pv[0].i;
ld=wl[0].i;
t=0;
do{
t2++;
if(sign==1&&t2==PVD)
{t=t+1;pvd=pv[t].i;fd[t2]=0;di[t2]=0;
if(k2==0&&t2==ld)
{t2=t2+1;ld=wl[t2].i;}
}continue;
else
B[t2]=BII[t2];
if(k2==0&&sing==1&&t2==ld)
{
B[t2]=B[t2]+AF[1]*wl[t2].qi/wl[t2].vi/wl[t2].vi;t2=t2+1;ld=wl[t2].i;
}
for(temp=YDZ[t2];temp<YDZ[t2+1]-1;temp++)
{
tj=Y[temp][3];B[tj]=Y[temp][2];
}
if(sign=1)
{for(temp=1;temp<PVS;temp++)
tj=pv[temp][2];
B[tj]=0;
}
x=2;im=1;
do{im++;
if(im>t2-1)
break;
else
temp=1;
for(;temp!>fd[im];){if(u[x+1]!=1){temp=temp+1;x=x+2;}else ai=u[x]/} /*u[]未完成*/
continue;
}
}while(t2!=N-1);
}
dataout()
{
clrscr();
printf("note 1 voltagen");
printf("(.639696730300784) + j (1.832939) = 1.94136001255537 ∠ 70.7609880529659°n");
printf("87u& 婾[1]??u?孢???�u
--------------------------------------------------------------------------------
??虍鉧C&8u謤蛝髻??n");
}
main()
{
datain(); /*数据输入及处理*/
matrixform(); /*矩阵的形成*/
/* divisorform(); */ /*因子表的形成*/
matrixsolve(); /*矩阵线形方程的求解*/
/* nodepower(); */ /*迭代过程中节点功率的计算*/
/* iterate(); */ /*迭代*/
dataout(); /*数据输出及支路功率计算*/
}
5. 4.1电力系统潮流计算的计算机算法有哪些各有何特点
方法有导纳法、阻抗法、N-R法、PQ分解法。各种方法均有不同的优缺点,取决于已知量以及系统结构
6. 潮流的电力系统计算
电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、各支路电流、功率及网损。对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。
表征电力系统运行状态的参量。包括电力系统中各节点和支路中的电压、电流和功率的流向及分布。在实用上,一般是指稳态运行方式下的静态潮流。合理的潮流分布是电力系统运行的基本要求,其要点为:①运行中的各种电工设备所承受的电压应保持在允许范围内,各种元件所通过的电流应不超过其额定电流,以保证设备和元件的安全;②应尽量使全网的损耗最小,达到经济运行的目的;③正常运行的电力系统应满足静态稳定和暂态稳定的要求。并有一定的稳定储备,不发生异常振荡现象。为此就要求电力系统运行调度人员随时密切监视并调整潮流分布。现代电力系统潮流分布的监视和调整是通过以在线计算机为中心的调度自动化系统来实现的。电力系统潮流的计算和分析是电力系统运行和规划工作的基础。运行中的电力系统,通过潮流计算可以预知,随着各种电源和负荷的变化以及网络结构的改变,网络所有母线的电压是否能保持在允许范围内,各种元件是否会出现过负荷而危及系统的安全,从而进一步研究和制订相应的安全措施。规划中的电力系统,通过潮流计算,可以检验所提出的网络规划方案能否满足各种运行方式的要求,以便制定出既满足未来供电负荷增长的需求,又保证安全稳定运行的网络规划方案。
7. 电力系统计算机潮流计算问题,谢!
一:牛顿潮流算法的特点
1)其优点是收敛速度快,若初值较好,算法将具有平方收敛特性,一般迭代4~5 次便可以
收敛到非常精确的解,而且其迭代次数与所计算网络的规模基本无关。
2)牛顿法也具有良好的收敛可靠性,对于对高斯-塞德尔法呈病态的系统,牛顿法均能可靠
地敛。
3)初值对牛顿法的收敛性影响很大。解决的办法可以先用高斯-塞德尔法迭代1~2 次,以
此迭代结果作为牛顿法的初值。也可以先用直流法潮流求解一次求得一个较好的角度初值,
然后转入牛顿法迭代。
PQ法特点:
(1)用解两个阶数几乎减半的方程组(n-1 阶和n-m-1 阶)代替牛顿法的解一个(2n-m-2)阶方程
组,显着地减少了内存需求量及计算量。
(2)牛顿法每次迭代都要重新形成雅可比矩阵并进行三角分解,而P-Q 分解法的系数矩阵 B’
和B’’是常数阵,因此只需形成一次并进行三角分解组成因子表,在迭代过程可以反复应用,
显着缩短了每次迭代所需的时间。
(3)雅可比矩阵J 不对称,而B’和B’’都是对称阵,为此只要形成并贮存因子表的上三角或下
三角部分,减少了三角分解的计算量并节约了内存。由于上述原因,P-Q 分解法所需的内存
量约为牛顿法的60%,而每次迭代所需时间约为牛顿法的1/5。
二:因为牛顿法每次迭代都要重新生成雅克比矩阵,而PQ法的迭代矩阵是常数阵(第一次形成的)。参数一变,用PQ法已做的工作相当于白做了,相当于重新算,次数必然增多。
8. 电力系统里的潮流如何计算 有何方便的软件需要输入什么参数
电力系统中的潮流计算归结为求解一个用功率作为注入的非线性方程组。牛顿拉夫逊法和PQ分解法都是求解潮流方程的典型算法。这方面的软件有很多,国外、国内都有。在国内应用较广的如电科院的PSASP,中国版BPA都有潮流计算的功能。不同的软件在输入方式、数据文件格式和输入内容上都有差别。但直接与功率方程相关的几个重要参数都是一样的。比如,不同类型节点(PQ,PV)的已知量,平衡节点定义,线路阻抗、变压器阻抗和变比等。
9. 电力潮流计算要点。及软件。
ETAP电气及电力系统综合分析软件可以根据确定的电网运行方式,计算各母线电压,各支路的电流、功率、功率因数、电压降和功率损耗,给出母线电压报警、支路过载报警、发电机过载和励磁报警等。此外,还可以做变压器有载调压分接头调节,断路器、电缆和变压器的评估和选择。结合ETAP三维数据库,可以很方便地实现对大系统做不同案例(不同运行方式、不同系统参数)的潮流分析。用户可以选择牛顿-拉夫逊法,快速解耦法和加速高斯-塞德尔法三种方法中的任意一种做潮流计算。ETAP新版本中新增的自适应牛顿拉夫逊法有更好的收敛性。计算所需要的参数有电源电压和发电数据、负荷铭牌数据、支路阻抗数据和变压器铭牌数据。计算结果结合单线图显示,还可以出全面的结果报告。