导航:首页 > 源码编译 > 逻辑回归算法属于回归算法吗

逻辑回归算法属于回归算法吗

发布时间:2022-10-19 12:00:24

A. 回归算法有哪些

回归算法有:
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。
逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,我们就应该使用逻辑回归。这里,Y的值从0到1,它可以方程表示。

B. 分层回归是逻辑回归吗

不属于。

逻辑回归属于概率型的非线性回归,分为二分类和多分类的回归模型。分层回归的理解其实是对两个或多个回归模型进行比较。分组数据的逻辑回归模型也可以称为分层逻辑回归。

分层回归将核心研究的变量放在最后一步进入模型,以考察在排除了其他变量的贡献的情况下,该变量对回归方程的贡献。如果变量仍然有明显的贡献,那么就可以做出该变量确实具有其他变量所不能替代的独特作用的结论。

这种方法主要用于,当自变量之间有较高的相关,其中一个自变量的独特贡献难以确定的情况。常用于中介作用或者调节作用研究中。

概念

logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b。

而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。

logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。

C. 怎样正确理解逻辑回归(logistic regression)

逻辑回归通常用于解决分类问题,“分类”是应用逻辑回归的目的和结果,但中间过程依旧是“回归”。

结果P也可以理解为概率,换句话说概率大于0.5的属于1分类,概率小于0.5的属于0分类,这就达到了分类的目的。

逻辑回归有什么优点

LR能以概率的形式输出结果,而非只是0,1判定。

LR的可解释性强,可控度高(你要给老板讲的嘛…)。

训练快,feature engineering之后效果赞。

因为结果是概率,可以做ranking model。

逻辑回归有哪些应用

CTR预估/推荐系统的learning to rank/各种分类场景。

某搜索引擎厂的广告CTR预估基线版是LR。

某电商搜索排序/广告CTR预估基线版是LR。

某电商的购物搭配推荐用了大量LR。

某现在一天广告赚1000w+的新闻app排序基线是LR。

D. 数据分析师—技术面试

数据分析师—技术面试
三月份开始找实习,到现在已经有半年的时间了,在这半年的时间中,该经历的基本上都已经经历,春招实习时候,拿到了7个offer,校招时候,成功的拿下一份心仪的工作,结束了我的秋招旅程。对于面试,技术层面即算法、软件等等,业务层面就是忽悠(毕竟没有做过完整的项目),但是也要有自己的逻辑和思考方式(这方面我也有很大的欠缺),下面将自己的面试经历梳理为技术层面和业务层面,来分享给大家。
技术面试
一、软件

1. R语言的文件读取:csv文件的读取方式(read.csv),txt文件的读取方式(read.table)
2. R语言中一些小函数的作用
①apply函数:1代表调用每一行的函数,0代表调用每一列的函数(注意其用法和Python的区别)
②runif函数:生成均匀分布的随机数
③sample(,return = TRUE):随机有放回的抽样
3. Python中list列表和元组的最大区别:元组的值不可以改变,但是列表的值是可以改变的。
4.数据库中表的连接方式
①内部连接:inner join
②外部连接:outer join
③左连接:left join
注:对于数据分析,建议大家无论是R,Python,sql都有自己一套流程化的体系,这一体系可以很好的帮助你解决实际中的问题。
二、算法

对于算法(分类,聚类,关联等),更是建议大家有一套流程化的体系,在面试算法的时候,是一个依次递进的过程,不要给自己挖坑,相反,更要将自己的优势发挥的淋漓尽致,把自己会的东西全部释放出来。
下面我将自己的所有面试串联起来,给大家分享一下,仅供参考。
面试官:小张同学,你好,看了你的简历,对相关算法还是略懂一些,下面开始我们的面试,有这么一个场景,在一个样本集中,其中有100个样本属于A,9900个样本属于B,我想用决策树算法来实现对AB样本进行区分,这时会遇到什么问题:
小张:欠拟合现象,因为在这个样本集中,AB样本属于严重失衡状态,在建立决策树算法的过程中,模型会更多的偏倚到B样本的性质,对A样本的性质训练较差,不能很好的反映样本集的特征。
面试官:看你决策树应该掌握的不错,你说一下自己对于决策树算法的理解?
小张:决策树算法,无论是哪种,其目的都是为了让模型的不确定性降低的越快越好,基于其评价指标的不同,主要是ID3算法,C4.5算法和CART算法,其中ID3算法的评价指标是信息增益,C4.5算法的评价指标是信息增益率,CART算法的评价指标是基尼系数。
面试官:信息增益,好的,这里面有一个信息论的概念,你应该知道的吧,叙述一下
小张:香农熵,随机变量不确定性的度量。利用ID3算法,每一次对决策树进行分叉选取属性的时候,我们会选取信息增益最高的属性来作为分裂属性,只有这样,决策树的不纯度才会降低的越快。
面试官:OK,你也知道,在决策树无限分叉的过程中,会出现一种现象,叫过拟合,和上面说过的欠拟合是不一样的,你说一下过拟合出现的原因以及我们用什么方法来防止过拟合的产生?
小张:对训练数据预测效果很好,但是测试数据预测效果较差,则称出现了过拟合现象。对于过拟合现象产生的原因,有以下几个方面,第一:在决策树构建的过程中,对决策树的生长没有进行合理的限制(剪枝);第二:在建模过程中使用了较多的输出变量,变量较多也容易产生过拟合;第三:样本中有一些噪声数据,噪声数据对决策树的构建的干扰很多,没有对噪声数据进行有效的剔除。对于过拟合现象的预防措施,有以下一些方法,第一:选择合理的参数进行剪枝,可以分为预剪枝后剪枝,我们一般用后剪枝的方法来做;第二:K-folds交叉验证,将训练集分为K份,然后进行K次的交叉验证,每次使用K-1份作为训练样本数据集,另外的一份作为测试集合;第三:减少特征,计算每一个特征和响应变量的相关性,常见的为皮尔逊相关系数,将相关性较小的变量剔除,当然还有一些其他的方法来进行特征筛选,比如基于决策树的特征筛选,通过正则化的方式来进行特征选取等。
面试官:你刚刚前面有提到预剪枝和后剪枝,当然预剪枝就是在决策树生成初期就已经设置了决策树的参数,后剪枝是在决策树完全建立之后再返回去对决策树进行剪枝,你能否说一下剪枝过程中可以参考的某些参数?
小张:剪枝分为预剪枝和后剪枝,参数有很多,在R和Python中都有专门的参数来进行设置,下面我以Python中的参数来进行叙述,max_depth(树的高度),min_samples_split(叶子结点的数目),max_leaf_nodes(最大叶子节点数),min_impurity_split(限制不纯度),当然R语言里面的rpart包也可以很好的处理这个问题。
面试官:对了,你刚刚还说到了用决策树来进行特征的筛选,现在我们就以ID3算法为例,来说一下决策树算法对特征的筛选?
小张:对于离散变量,计算每一个变量的信息增益,选择信息增益最大的属性来作为结点的分裂属性;对于连续变量,首先将变量的值进行升序排列,每对相邻值的中点作为可能的分离点,对于每一个划分,选择具有最小期望信息要求的点作为分裂点,来进行后续的决策数的分裂。
面试官:你刚刚还说到了正则化,确实可以对过拟合现象来进行很好的调整,基于你自己的理解,来说一下正则化?
小张:这一块的知识掌握的不是很好,我简单说一下自己对这一块的了解。以二维情况为例,在L1正则化中,惩罚项是绝对值之和,因此在坐标轴上会出现一个矩形,但是L2正则化的惩罚项是圆形,因此在L1正则化中增大了系数为0的机会,这样具有稀疏解的特性,在L2正则化中,由于系数为0的机率大大减小,因此不具有稀疏解的特性。但是L1没有选到的特性不代表不重要,因此L1和L2正则化要结合起来使用。
面试官:还可以吧!正则化就是在目标函数后面加上了惩罚项,你也可以将后面的惩罚项理解为范数。分类算法有很多,逻辑回归算法也是我们经常用到的算法,刚刚主要讨论的是决策树算法,现在我们简单聊一下不同分类算法之间的区别吧!讨论一下决策树算法和逻辑回归算法之间的区别?
小张:分为以下几个方面:第一,逻辑回归着眼于对整体数据的拟合,在整体结构上优于决策树;但是决策树采用分割的方法,深入到数据内部,对局部结构的分析是优于逻辑回归;第二,逻辑回归对线性问题把握较好,因此我们在建立分类算法的时候也是优先选择逻辑回归算法,决策树对非线性问题的把握较好;第三,从本质来考虑,决策树算法假设每一次决策边界都是和特征相互平行或垂直的,因此会将特征空间划分为矩形,因而决策树会产生复杂的方程式,这样会造成过拟合现象;逻辑回归只是一条平滑的边界曲线,不容易出现过拟合现象。
面试官: 下面呢我们来聊一下模型的评估,算法进行模型评估的过程中,常用的一些指标都有哪些,精度啊?召回率啊?ROC曲线啊?这些指标的具体含义是什么?
小张:精度(precision),精确性的度量,表示标记为正例的元组占实际为正例的比例;召回率(recall),完全性的度量,表示为实际为正例的元组被正确标记的比例;ROC 曲线的横坐标为假阳性,纵坐标为真阳性,值越大,表示分类效果越好。
(to be honest,这个问题第一次我跪了,虽然说是记忆一下肯定没问题,但是当时面试的那个时候大脑是一片空白)
面试官:聚类分析你懂得的吧!在我们一些分析中,它也是我们经常用到的一类算法,下面你介绍一下K-means算法吧!
小张:对于K-means算法,可以分为以下几个步骤:第一,从数据点中随机抽取K个数据点作为初始的聚类中心;第二:计算每个点到这K个中心点的距离,并把每个点分到距离其最近的中心中去;第三:求取各个类的均值,将这些均值作为新的类中心;第四:重复进行步骤二三过程,直至算法结束,算法结束有两种,一种是迭代的次数达到要求,一种是达到了某种精度。
后记
面试的水很深,在数据分析技术面的时候问到的东西当然远远不止这些,因此在我们的脑子里面一定要形成一个完整的体系,无论是对某一门编程语言,还是对数据挖掘算法,在工作中都需要形成你的闭环,在面试中更是需要你形成闭环,如何更完美的包装自己,自己好好总结吧!
附录
R语言数据处理体系:数据简单预处理个人总结
1、数据简单查看
⑴查看数据的维度:dim
⑵查看数据的属性:colnames
⑶查看数据类型:str
注:有一些算法,比如说组合算法,要求分类变量为因子型变量;层次聚类,要求是一个距离矩阵,可以通过str函数进行查看
⑷查看前几行数据:head
注:可以初步观察数据是不是有量纲的差异,会后续的分析做准备
⑸查看因子型变量的占比情况:table/prop.table
注:可以为后续数据抽样做准备,看是否产生类不平衡的问题
2、数据缺失值处理
⑴summary函数进行简单的查看
⑵利用mice和VIM包查看数据缺失值情况,代表性函数: md.pattern、aggr
⑶caret包中的preProcess函数,可以进行缺失值的插补工作,有knn、袋装、中位数方法
⑷missForest包中的missForest函数,可以用随机森林的方法进行插补
⑸可以用回归分析的方法完成缺失值插补工作
⑹如果样本量很多,缺失的数据很少,可以选择直接剔除的方法
3、数据异常值处理
⑴summary函数进行简单的查看,比如:最大值、最小值等
⑵boxplot函数绘制箱线图
4、数据抽样
⑴sample函数进行随机抽样
⑵caret包中的createDataPartition()函数对训练样本和测试样本进行等比例抽样
⑶caret包中的createFold函数根据某一个指标进行等比例抽样
⑷DMwR包中SMOTE函数可以解决处理不平衡分类问题
注:比如决策树算法中,如果样本严重不平衡,那么模型会出现欠拟合现象
5、变量的多重共线性处理
⑴结合业务,先删除那些和分析无关的指标
⑵corrgram包的corrgram函数查看相关系数矩阵
⑶caret包中的findCorrelation函数查看多重共线性
⑷如果相关性太大,可以考虑删除变量;如果变量比较重要,可以考虑主成分/因子分析进行降维处理

E. 机器学习的方法之回归算法

我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算法,希望这篇文章能够帮助到大家。
一般来说,回归算法是机器学习中第一个要学习的算法。具体的原因,第一就是回归算法比较简单,可以让人直接从统计学过渡到机器学习中。第二就是回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习其他的算法。而回归算法有两个重要的子类:即线性回归和逻辑回归。
那么什么是线性回归呢?其实线性回归就是我们常见的直线函数。如何拟合出一条直线最佳匹配我所有的数据?这就需要最小二乘法来求解。那么最小二乘法的思想是什么呢?假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。
那么什么是逻辑回归呢?逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类。而逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。下面的两个算法是机器学习界最强大且重要的算法,都可以拟合出非线性的分类线。这就是有关逻辑回归的相关事项。
在这篇文章中我们简单给大家介绍了机器学习中的回归算法的相关知识,通过这篇文章我们不难发现回归算法是一个比较简答的算法,回归算法是线性回归和逻辑回归组成的算法,而线性回归和逻辑回归都有自己实现功能的用处。这一点是需要大家理解的并掌握的,最后祝愿大家能够早日学会回归算法。

F. 逻辑回归和线性回归的区别 机器学习

逻辑回归:y=sigmoid(w'x)
线性回归:y=w'x
也就是逻辑回归比线性回归多了一个sigmoid函数,sigmoid(x)=1/(1+exp(-x)),其实就是对x进行归一化操作,使得sigmoid(x)位于0~1
逻辑回归通常用于二分类模型,目标函数是二类交叉熵,y的值表示属于第1类的概率,用户可以自己设置一个分类阈值。
线性回归用来拟合数据,目标函数是平法和误差

G. 数据挖掘核心算法之一--回归

数据挖掘核心算法之一--回归
回归,是一个广义的概念,包含的基本概念是用一群变量预测另一个变量的方法,白话就是根据几件事情的相关程度,用其中几件来预测另一件事情发生的概率,最简单的即线性二变量问题(即简单线性),例如下午我老婆要买个包,我没买,那结果就是我肯定没有晚饭吃;复杂一点就是多变量(即多元线性,这里有一点要注意的,因为我最早以前犯过这个错误,就是认为预测变量越多越好,做模型的时候总希望选取几十个指标来预测,但是要知道,一方面,每增加一个变量,就相当于在这个变量上增加了误差,变相的扩大了整体误差,尤其当自变量选择不当的时候,影响更大,另一个方面,当选择的俩个自变量本身就是高度相关而不独立的时候,俩个指标相当于对结果造成了双倍的影响),还是上面那个例子,如果我丈母娘来了,那我老婆就有很大概率做饭;如果在加一个事件,如果我老丈人也来了,那我老婆肯定会做饭;为什么会有这些判断,因为这些都是以前多次发生的,所以我可以根据这几件事情来预测我老婆会不会做晚饭。
大数据时代的问题当然不能让你用肉眼看出来,不然要海量计算有啥用,所以除了上面那俩种回归,我们经常用的还有多项式回归,即模型的关系是n阶多项式;逻辑回归(类似方法包括决策树),即结果是分类变量的预测;泊松回归,即结果变量代表了频数;非线性回归、时间序列回归、自回归等等,太多了,这里主要讲几种常用的,好解释的(所有的模型我们都要注意一个问题,就是要好解释,不管是参数选择还是变量选择还是结果,因为模型建好了最终用的是业务人员,看结果的是老板,你要给他们解释,如果你说结果就是这样,我也不知道问什么,那升职加薪基本无望了),例如你发现日照时间和某地葡萄销量有正比关系,那你可能还要解释为什么有正比关系,进一步统计发现日照时间和葡萄的含糖量是相关的,即日照时间长葡萄好吃,另外日照时间和产量有关,日照时间长,产量大,价格自然低,结果是又便宜又好吃的葡萄销量肯定大。再举一个例子,某石油产地的咖啡销量增大,国际油价的就会下跌,这俩者有关系,你除了要告诉领导这俩者有关系,你还要去寻找为什么有关系,咖啡是提升工人精力的主要饮料,咖啡销量变大,跟踪发现工人的工作强度变大,石油运输出口增多,油价下跌和咖啡销量的关系就出来了(单纯的例子,不要多想,参考了一个根据遥感信息获取船舶信息来预测粮食价格的真实案例,感觉不够典型,就换一个,实际油价是人为操控地)。
回归利器--最小二乘法,牛逼数学家高斯用的(另一个法国数学家说自己先创立的,不过没办法,谁让高斯出名呢),这个方法主要就是根据样本数据,找到样本和预测的关系,使得预测和真实值之间的误差和最小;和我上面举的老婆做晚饭的例子类似,不过我那个例子在不确定的方面只说了大概率,但是到底多大概率,就是用最小二乘法把这个关系式写出来的,这里不讲最小二乘法和公式了,使用工具就可以了,基本所有的数据分析工具都提供了这个方法的函数,主要给大家讲一下之前的一个误区,最小二乘法在任何情况下都可以算出来一个等式,因为这个方法只是使误差和最小,所以哪怕是天大的误差,他只要是误差和里面最小的,就是该方法的结果,写到这里大家应该知道我要说什么了,就算自变量和因变量完全没有关系,该方法都会算出来一个结果,所以主要给大家讲一下最小二乘法对数据集的要求:
1、正态性:对于固定的自变量,因变量呈正态性,意思是对于同一个答案,大部分原因是集中的;做回归模型,用的就是大量的Y~X映射样本来回归,如果引起Y的样本很凌乱,那就无法回归
2、独立性:每个样本的Y都是相互独立的,这个很好理解,答案和答案之间不能有联系,就像掷硬币一样,如果第一次是反面,让你预测抛两次有反面的概率,那结果就没必要预测了
3、线性:就是X和Y是相关的,其实世间万物都是相关的,蝴蝶和龙卷风(还是海啸来着)都是有关的嘛,只是直接相关还是间接相关的关系,这里的相关是指自变量和因变量直接相关
4、同方差性:因变量的方差不随自变量的水平不同而变化。方差我在描述性统计量分析里面写过,表示的数据集的变异性,所以这里的要求就是结果的变异性是不变的,举例,脑袋轴了,想不出例子,画个图来说明。(我们希望每一个自变量对应的结果都是在一个尽量小的范围)
我们用回归方法建模,要尽量消除上述几点的影响,下面具体讲一下简单回归的流程(其他的其实都类似,能把这个讲清楚了,其他的也差不多):
first,找指标,找你要预测变量的相关指标(第一步应该是找你要预测什么变量,这个话题有点大,涉及你的业务目标,老板的目的,达到该目的最关键的业务指标等等,我们后续的话题在聊,这里先把方法讲清楚),找相关指标,标准做法是业务专家出一些指标,我们在测试这些指标哪些相关性高,但是我经历的大部分公司业务人员在建模初期是不靠谱的(真的不靠谱,没思路,没想法,没意见),所以我的做法是将该业务目的所有相关的指标都拿到(有时候上百个),然后跑一个相关性分析,在来个主成分分析,就过滤的差不多了,然后给业务专家看,这时候他们就有思路了(先要有东西激活他们),会给一些你想不到的指标。预测变量是最重要的,直接关系到你的结果和产出,所以这是一个多轮优化的过程。
第二,找数据,这个就不多说了,要么按照时间轴找(我认为比较好的方式,大部分是有规律的),要么按照横切面的方式,这个就意味横切面的不同点可能波动较大,要小心一点;同时对数据的基本处理要有,包括对极值的处理以及空值的处理。
第三, 建立回归模型,这步是最简单的,所有的挖掘工具都提供了各种回归方法,你的任务就是把前面准备的东西告诉计算机就可以了。
第四,检验和修改,我们用工具计算好的模型,都有各种假设检验的系数,你可以马上看到你这个模型的好坏,同时去修改和优化,这里主要就是涉及到一个查准率,表示预测的部分里面,真正正确的所占比例;另一个是查全率,表示了全部真正正确的例子,被预测到的概率;查准率和查全率一般情况下成反比,所以我们要找一个平衡点。
第五,解释,使用,这个就是见证奇迹的时刻了,见证前一般有很久时间,这个时间就是你给老板或者客户解释的时间了,解释为啥有这些变量,解释为啥我们选择这个平衡点(是因为业务力量不足还是其他的),为啥做了这么久出的东西这么差(这个就尴尬了)等等。
回归就先和大家聊这么多,下一轮给大家聊聊主成分分析和相关性分析的研究,然后在聊聊数据挖掘另一个利器--聚类。

H. 逻辑回归算法原理是什么

逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,测试验证我们这个求解的模型的好坏。

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。

(8)逻辑回归算法属于回归算法吗扩展阅读:

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型。这一家族中的模型形式基本上都差不多,不同的就是因变量不同。这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

阅读全文

与逻辑回归算法属于回归算法吗相关的资料

热点内容
以太坊源码共识机制 浏览:909
单片机探测器 浏览:869
demo编程大赛作品怎么运行 浏览:50
学历提升用什么手机软件App 浏览:938
apk反编译弊端 浏览:451
编译器内联 浏览:910
圆形相框是什么app 浏览:479
安卓微信如何设置文字加长 浏览:764
中科编译科技公司高新技术企业 浏览:770
win7文件夹选项功能 浏览:90
微信文件夹为什么会被锁定 浏览:994
加密系列号 浏览:458
电冰箱换压缩机要注意什么 浏览:795
平板的访客模式如何加密 浏览:139
钉钉加密有用吗 浏览:112
加密u盘好还是不加密的 浏览:349
微观经济学平狄克第八版pdf 浏览:404
linux查看实时流量 浏览:557
如何存档到服务器 浏览:548
flash编程书籍推荐 浏览:836