导航:首页 > 源码编译 > 计算机算法的基本操作有什么

计算机算法的基本操作有什么

发布时间:2022-10-19 13:43:48

❶ 计算机编程算法有哪些比较常用的用以解决问题的

一)基本算法 : 1.枚举 2.搜索: 深度优先搜索 广度优先搜索 启发式搜索 遗传算法 (二)数据结构的算法 (三)数论与代数算法 (四)计算几何的算法:求凸包 (五)图论 算法: 1.哈夫曼编码 2.树的遍历 3.最短路径 算法 4.最小生成树 算法 5.最小树形图 6.网络流 算法 7.匹配算法 (六)动态规划 (七)其他: 1.数值分析 2.加密算法 3.排序 算法 4.检索算法 5.随机化算法

❷ 大一计算机专业应该掌握的算法有哪些

大一的话不用掌握太专一的算法,主要是真正理解程序设计的3中流程,知道数组能干哪些事情,尝试理解函数递归,理解RAM机模型。掌握以下基本算法:
筛选法、试除法求素数,汉诺塔,放苹果,简单枚举法,N皇后问题等简单回溯法,简单模拟法,高精度算法(+-*/),GCD算法,二分法、牛顿发求根,选择、冒泡排序等基本算法。
一开始,学会用程序表达自己的算法思想是最基本的基本功。
年级高了以后,等你学了离散数学。数据结构,算法设计与分析以后,就能设计些较复杂的算法了。

推荐几本书:
算法导论,英文叫Introction to Algorithms,2nd Edition,这个很经典
计算机程序设计艺术,这个也是经典着作,最好看看
数据结构与算法分析
如果你们学校有ACM校队的话最好和他们交流交流。

❸ 计算机二级数据结构与算法知识点

一、数据结构

(1)数据结构的基本概念

1、数据:数据是客观事物的符号表示,是能输入到计算机中并被计算程序识别和处理的符号的总称,如文档,声音,视频等。

2、数据元素:数据元素是数据的基本单位。

3、数据对象:数据对象是性质相同的数据元素的集合。

4、数据结构:是指由某一数据对象中所有数据成员之间的关系组成的集合。

(2)逻辑结构和存储结构

1、数据结构可分为数据的逻辑结构和存储结构。

1)数据的逻辑结构是对数据元素之间的逻辑关系的描述,与数据的存储无关,是面向问题的,是独立于计算机的。它包括数据对象和数据对象之间的关系。

2)数据的存储结构也称为数据的物理结构,是数据在计算机中的存放的方式,是面向计算机的,它包括数据元素的存储方式和关系的存储方式。

2、存储结构和逻辑结构的关系:一种数据的逻辑结构可以表示成多种存储结构即数据的逻辑结构和存储结构不一定一一对应。

3、常见的存储结构有:顺序,链接,索引等。采用不同的存储结构其数据处理的效率是不同的。

❹ 计算机算法是什么

计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。

❺ 计算机算法指的是什么

计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。

无论算法有多么复杂,都必须在有限步之后结束并终止运行;即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。

算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。

(5)计算机算法的基本操作有什么扩展阅读

特点

1、有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。

2、确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。

3、有零个或多个输入。所谓输入是指在执行算法是需要从外界取得必要的信息。

4、有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。

5、有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。

❻ 计算机专业学算法的都学些什么算法,有什么书可以看的学的话需要些什么基础的

计算机算法非常多的
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。

❼ 计算机应用基础知识

2017计算机应用基础知识

1.1数据结构与算法

借助于计算机解决问题,首先需要了解所处理对象的性质和特点即所操作对象的数据结构,然后再设计解决问题的方法和步骤即设计一个合理的算法,即通常所说的“程序=数据结构+算法”。

1.1.1算法的基本概念

“算法”(Algorithm)一词最早来自公元9世纪波斯数学家比阿勒·霍瓦里松的一本影响深远的着作《代数对话录》。20世纪的英国数学家图灵提出了着名的图灵论点,并抽象出了一台机器,这台机器被我们称之为图灵机。图灵的思想对算法的发展起到了重要的作用。一般来说,算法是指完成一个任务或解决一个问题所需要的具体步骤和方法的描述。在这里我们说的算法是指计算机能执行的算法。

1.算法分类

计算机算法可分为两大类,一类是数值运算算法,另一类是非数值运算算法。数值运算算法主要是求数值解,如求方程的解、求函数的定积分等,非数值运算的范围则非常广泛,如人事管理、图书检索等。

2.算法特征

一个科学的算法必须具备以下特征:

(1)有穷性:一个算法必须保证执行有限步之后结束,而不能是无限的。这是显而易见的。更进一步说,有穷性是指在合理的范围内结束运算,如果一个算法需计算机执行几百年或更长时间才结束,这显然是不合理的。

(2)确定性:算法的每一步骤必须有确切的定义而不能模棱两可,算法中不能出现诸如“一个比较大的数”等模糊描述。

(3)有零个或多个输入

(4)有一个或多个输出。算法的目的是为了解决问题,一个没有输出的算法是不能解决任何问题因而它是没有意义的.

(5)有效性。算法中的每一个步骤都都应当能有效地执行,并得到确定的结果。例如,若n=0则执行m/n是无法有效执行的。

3.算法表示

一个计算机算法可以用自然语言、流程图、N-S图等来表示。

4.算法分析

算法分析的任务是对设计出的每一个具体的算法,利用数学工具,讨论各种复杂度,以探讨某种具体算法适用于哪类问题,或某类问题宜采用哪种算法。

算法的复杂度分时间复杂度和空间复杂度。

.时间复杂度:在运行算法时所耗费的时间为f(n)(即 n的函数)。

.空间复杂度:实现算法所占用的空间为g(n)(也为n的函数)。

称O(f(n))和O(g(n))为该算法的复杂度。

1.1.2 数据结构的定义

数据结构是计算机科学与技术领域上广泛被使用的术语。尽管它至今还未有一个被一致公认的定义,但其内容是大家一致公认的。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的'数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。

数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。

一般数据结构可采用下面两类主要的存储方式,大多数数据结构的存储表示都采用其中的一类方式,或两类方式的结合。

1. 顺序存储结构

这种存储方式的主要用于线性数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元内,结点之间的关系由存储单元的邻接关系来实现。

顺序存储结构的主要特点是:(1)结点中只有自身信息域,没有连接信息域,因此存储密度大,存储空间利用率高;(2)可以通过计算直接确定数据结构中第i个结点的存储地址Li,计算公式为Li=L0+(i-1)*m,其中L0为第一个结点的存储地址,m为每个结点所占用的存储单元个数;(3)插入、删除运算不便,会引起大量结点的移动。

2. 链式存储结构

链式存储结构就是在每个结点中至少包括一个指针域,用指针来体现数据元素之间逻辑上的联系。这种存储结构可把逻辑上相邻的两个元素存放在物理上不相邻的存储单元中;还可以在线性编址的计算机存储器中表示结点之间的非线性联系。

链式存储结构的主要特点是:(1)结点中除自身外,还有表示连接信息的指针域,因此比顺序结构的存储密度小,存储空间利用率低;(2)逻辑上相邻的结点物理上不必邻接,可用于线性表、树、图等多种逻辑结构的存储表示;(3)插入、删除操作灵活方便,不必移动结点,只要改变结点中的指针即可。

除上述两种主要存储方式外,散列法也是在线性表和集合的存储表示中常用的一种存储方式。

1.1.3 线性表结构

1.线性表的定义

线性表(Linear List)是最常用并且最简单的一种数据结构。它是由n(n≥0)个数据元素(结点)a1,a2,…,an组成的有限序列。

① 数据元素的个数n定义为表的长度(n=0时称为空表)。

② 将非空的线性表(n>0)记作:(a1,a2,…,an)

③ 数据元素ai(1≤i≤n)只是个抽象符号,其具体含义在不同情况下可以不同。

在一些比较复杂的线性表中,一个数据元素可以由若干个数据项组成。在这种情况下,一般把数据元素称为记录,含有大量记录的线性表也称为文件。

例1英文字母表(A,B,…,Z)是线性表,表中每个字母是一个数据元素(结点) 例2一副扑克牌的点数(2,3,…,10,J,Q,K,A)也是一个线性表,其中数据元素是每张牌的点数

2.线性表的存储

线性表可采用顺序方式存储和链式方式存储。在各种高级语言中的一维数组就是用顺序方式存储的线性表,因此也常用一维数组来称呼顺序表。下面主要讨论的线性表对象是指顺序表。

3.线性表的基本操作

线性表是一种相当灵活的数据结构,不仅对它的数据元素可以查找访问,它的长度也可以根据需要增大或缩小,即可对线性表进行插入和删除数据元素运算。

常见的线性表的基本运算

(1) InitList(L)

构造一个空的线性表L,即表的初始化。

(2) ListLength(L)

求线性表L中的结点个数,即求表长。

(3) GetNode(L,i)

取线性表L中的第i个结点,这里要求1≤i≤ListLength(L)

(4) LocateNode(L,x)

在L中查找值为x 的结点,并返回该结点在L中的位置。若L中有多个结点的值和x 相同,则返回首次找到的结点位置;若L中没有结点的值为x ,则返回一个特殊值表示查找失败。

(5) InsertList(L,x,i)

在线性表L的第i个位置上插入一个值为x 的新结点,使得原编号为i,i+1,…,n的结点变为编号为i+1,i+2,…,n+1的结点。这里1≤i≤n+1,而n是原表L的长度。插入后,表L的长度加1。

(6) DeleteList(L,i)

删除线性表L的第i个结点,使得原编号为i+1,i+2,…,n的结点变成编号为i,i+1,…,n-1的结点。这里1≤i≤n,而n是原表L的长度。删除后表L的长度减1。具体程序实现可参考本书C语言相关章节。

1.1.4栈与队列结构

1.栈与队列的定义

栈是一种限定仅在表的一端进行插入与删除操作的线性表。允许进行插入与删除操作的这一端称为栈顶,而另一端称为栈底,不含元素的空表称为空栈,插入与删除分别称进栈与出栈。 由于插入与删除只能在同一端进行,所以较先进入栈的元素,在进行出栈操作时,要比较后才能出栈。特别是,最先进栈者,最后才能出栈,而最晚进栈者,必最先出栈。因此,栈也称作后进先出(Last In First Out)的线性表,简称LIFO表。

;

❽ 计算机中算法的基本概念有哪些

计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。一个算法必须具备以下性质:
(1)算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。
(2)算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。
(3)每个步骤都有确定的执行顺序,即上一步在哪里,下一步是什么,都必须明确,无二义性。
(4)无论算法有多么复杂,都必须在有限步之后结束并终止运行,即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。
一个问题的解决方案可以有多种表达方式,但只有满足以上4个条件的解才能称之为算法。

❾ 计算机常用算法有哪些

贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。
模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html

❿ 算法的基本要素有哪些

算法通常由两种基本要素组成分别是对数据对象的运算和操作;算法的控制结构,即运算或操作间的顺序。
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

阅读全文

与计算机算法的基本操作有什么相关的资料

热点内容
编译器内联 浏览:910
圆形相框是什么app 浏览:479
安卓微信如何设置文字加长 浏览:764
中科编译科技公司高新技术企业 浏览:770
win7文件夹选项功能 浏览:90
微信文件夹为什么会被锁定 浏览:994
加密系列号 浏览:458
电冰箱换压缩机要注意什么 浏览:795
平板的访客模式如何加密 浏览:139
钉钉加密有用吗 浏览:112
加密u盘好还是不加密的 浏览:349
微观经济学平狄克第八版pdf 浏览:404
linux查看实时流量 浏览:557
如何存档到服务器 浏览:548
flash编程书籍推荐 浏览:836
php获得数组键值 浏览:402
香港云服务器操作 浏览:303
wpe最新源码 浏览:857
自己购买云主服务器推荐 浏览:422
个人所得税java 浏览:761