导航:首页 > 源码编译 > 图的克鲁斯卡尔算法

图的克鲁斯卡尔算法

发布时间:2022-10-20 00:01:25

‘壹’ 如何实现克鲁斯卡尔算法

最好结合具体题目实现,我这里有个题目,里面有完整的代码,慢慢理解就是了 http://blog.csdn.net/aihahaheihei/article/details/6751786
里面还有很多,感兴趣也可以看看

‘贰’ 数据结构中图的克鲁斯卡尔算法的基本思想是

基本思想是:设有一个有n个顶点的连通网络N={V,E},最 初先构造一个只有n个顶点,没有边的非连通图 T={ V,¢},图中每个顶点自成一个 连通分量。当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通 分量上,则将此边加人到T中;否则将此边舍去,重新选择一条权值最小的边。如此重复 下去,直到所有顶点在同一个连通分量上为止。

‘叁’ 克鲁斯卡尔时间复杂度怎么算出来的

Kruskal算法的时间复杂度由排序算法决定,若采用快排则时间复杂度为O(N log N)。

kruskal算法:

求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n个点)所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的
具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。kruskal算法分e 步,其中e
是网络中边的数目。按耗费递增的顺序来考虑这e
条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。
假设WN=(V,{E})是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的
过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n
棵树的一个森林。之后,从网的边集 E
中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶
点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

‘肆’ 克鲁斯卡尔算法是求图的什么

求图的最小生成树啊,你上面不是也讲了么?
求最小生成树还有另一种prim算法
prim适合用于稠密图,kruskal适合用于稀疏图
两种算法都是以贪心为基本思想的~
满意望采纳谢谢!!!!

‘伍’ 克鲁斯卡尔算法的时间复杂度为多少

时间复杂度为O(|E|log|E|),其中E和V分别是图的边集和点集。

基本思想是先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树。

反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。

(5)图的克鲁斯卡尔算法扩展阅读:

克鲁斯卡尔算法证明

假设G=(V,E) 是一个具有n个顶点的连通网,T=(U,TE)是G的最小生成树,U的初值等于V,即包含有G中的全部顶点,TE的初值为空集。该算法的基本思想是:将图G中的边按权值从小到大的顺序依次选取。

若选取的边使生成树T不形成回路,则把它并入TE中,保留作为T的一条边,若选取的边使生成树T形成回路,则将其舍弃,如此进行下去直到TE中包含n-1条边为止,此时的T即为最小生成树。

克鲁斯卡尔算法,至多对e条边各扫描一次,每次选择最小代价的边仅需要O(loge)的时间。因此,克鲁斯卡尔算法的时间复杂度为O(eloge)。

‘陆’ 克鲁斯卡尔算法求最小生成树

克鲁斯卡尔算法的基本思想,这是我自己结合教材理解的,难免有误,谨慎参考:
1:将图中的n顶点看成是n个集合。解释为,图中共有6个顶点,那么就有六个集合。即a,b,c,d,e,f各自分别都是一个集合。{a},{b}等。
2:按权值由小到大的顺序选择边。所选边应满足两个顶点不在同一个顶点集合内。将该边放到生成树边的集合,同时将该边的两个顶点所在的集合合并。这是书上的描述,可能有点难理解,这里解释一下:
首先,选择权值最小的边,即为图中的(a,c)边,此时a,c满足不在同一个顶点集合内,将这个边记录下来,然后合并这两个顶点的集合,即此时剩下五个顶点集合了,{a,c},{b},{d},{e},{f}
3:重复步骤2,直到所有的顶点都在同一个集合内!解释如下:
此时剩下的边中权值最小的为(d,f),满足不在同一个顶点集合,所以记录下该边,然后合并这两个顶点集合。新的顶点集合为{a,c} {b} {e} {d,f}
接着,继续重复,选择边(b,e),满足不在同一个顶点集合内,所以记录下该边,然后再次合并这两个集合,新的集合为{a,c} {d,f} {b,e}
继续,选择边(c,f),满足不在同一个顶点集合内,所以记录下该边,然后合并这两个顶点所在的集合,新集合为{a,c,d,f} {b,e}
再继续,选择权值为15的边,发现边(c,d)和边(a,d)都不满足条件不在同一个顶点集合内,所以只能选择边(b,c),记录下该边,然后合并顶点集合,新集合为{a,b,c,d,e,f},此时所有点都在同一集合内,所以结束!
4:将上面我们记录的那些边连接起来就行了!这就是最小生成树,附本人手绘:

‘柒’ 克鲁斯卡尔算法的基本思想

先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。时间复杂度为为O(e^2), 使用并查集优化后复杂度为 O(eloge),与网中的边数有关,适用于求边稀疏的网的最小生成树。

‘捌’ 什么是克鲁斯卡尔算法

设有一个有n个顶点的连通网N={V,E},最初先构造一个只有n个顶点,没有边的非连通图T={V, E},图中每个顶点自成一个连通分量。当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通分量上,则将此边加入到T中;否则将此边舍去,重新选择一条权值最小的边。如此重复下去,直到所有顶点在同一个连通分量上为止。2算法描述编辑克鲁斯卡尔算法的时间复杂度为O(eloge)(e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树。克鲁斯卡尔算法从另一途径求网的最小生成树。假设连通网N=(V,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{∮}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边。依次类推,直至T中所有顶点都在同一连通分量上为止。例如图为依照克鲁斯卡尔算法构造一棵最小生成树的过程。代价分别为1,2,3,4的四条边由于满足上述条件,则先后被加入到T中,代价为5的两条边(1,4)和(3,4)被舍去。因为它们依附的两顶点在同一连通分量上,它们若加入T中,则会使T中产生回路,而下一条代价(=5)最小的边(2,3)联结两个连通分量,则可加入T。因此,构造成一棵最小生成树。上述算法至多对 e条边各扫描一次,假若以“堆”来存放网中的边,则每次选择最小代价的边仅需O(loge)的时间(第一次需O(e))。又生成树T的每个连通分量可看成是一个等价类,则构造T加入新的过程类似于求等价类的过程,由此可以以“树与等价类”中介绍的 mfsettp类型来描述T,使构造T的过程仅需用O(eloge)的时间,由此,克鲁斯卡尔算法的时间复杂度为O(eloge)。[1]

‘玖’ 克鲁斯卡尔算法的介绍

克鲁斯卡尔算法是在剩下的所有未选取的边中,找最小边,如果和已选取的边构成回路,则放弃,选取次小边。

阅读全文

与图的克鲁斯卡尔算法相关的资料

热点内容
apk反编译弊端 浏览:451
编译器内联 浏览:910
圆形相框是什么app 浏览:479
安卓微信如何设置文字加长 浏览:764
中科编译科技公司高新技术企业 浏览:770
win7文件夹选项功能 浏览:90
微信文件夹为什么会被锁定 浏览:994
加密系列号 浏览:458
电冰箱换压缩机要注意什么 浏览:795
平板的访客模式如何加密 浏览:139
钉钉加密有用吗 浏览:112
加密u盘好还是不加密的 浏览:349
微观经济学平狄克第八版pdf 浏览:404
linux查看实时流量 浏览:557
如何存档到服务器 浏览:548
flash编程书籍推荐 浏览:836
php获得数组键值 浏览:402
香港云服务器操作 浏览:303
wpe最新源码 浏览:857
自己购买云主服务器推荐 浏览:422