导航:首页 > 源码编译 > cart算法的实现

cart算法的实现

发布时间:2022-10-21 06:06:10

⑴ 求CART算法matlab实现

function D = CART(train_features, train_targets, params, region)

% Classify using classification and regression trees
% Inputs:
% features - Train features
% targets - Train targets
% params - [Impurity type, Percentage of incorrectly assigned samples at a node]
% Impurity can be: Entropy, Variance (or Gini), or Missclassification
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace

[Ni, M] = size(train_features);

%Get parameters
[split_type, inc_node] = process_params(params);

%For the decision region
N = region(5);
mx = ones(N,1) * linspace (region(1),region(2),N);
my = linspace (region(3),region(4),N)' * ones(1,N);
flatxy = [mx(:), my(:)]';

%Preprocessing
[f, t, UW, m] = PCA(train_features, train_targets, Ni, region);
train_features = UW * (train_features - m*ones(1,M));;
flatxy = UW * (flatxy - m*ones(1,N^2));;

%Build the tree recursively
disp('Building tree')
tree = make_tree(train_features, train_targets, M, split_type, inc_node, region);

%Make the decision region according to the tree
disp('Building decision surface using the tree')
targets = use_tree(flatxy, 1:N^2, tree);

D = reshape(targets,N,N);
%END

function targets = use_tree(features, indices, tree)
%Classify recursively using a tree

if isnumeric(tree.Raction)
%Reached an end node
targets = zeros(1,size(features,2));
targets(indices) = tree.Raction(1);
else
%Reached a branching, so:
%Find who goes where
in_right = indices(find(eval_r(tree.Raction)));
in_left = indices(find(eval_r(tree.Laction)));

Ltargets = use_tree(features, in_left, tree.left);
Rtargets = use_tree(features, in_right, tree.right);

targets = Ltargets + Rtargets;
end
%END use_tree

function tree = make_tree(features, targets, Dlength, split_type, inc_node, region)
%Build a tree recursively

if (length(unique(targets)) == 1),
%There is only one type of targets, and this generates a warning, so deal with it separately
tree.right = [];
tree.left = [];
tree.Raction = targets(1);
tree.Laction = targets(1);
break
end

[Ni, M] = size(features);
Nt = unique(targets);
N = hist(targets, Nt);

if ((sum(N < Dlength*inc_node) == length(Nt) - 1) | (M == 1)),
%No further splitting is neccessary
tree.right = [];
tree.left = [];
if (length(Nt) ~= 1),
MLlabel = find(N == max(N));
else
MLlabel = 1;
end
tree.Raction = Nt(MLlabel);
tree.Laction = Nt(MLlabel);

else
%Split the node according to the splitting criterion
deltaI = zeros(1,Ni);
split_point = zeros(1,Ni);
op = optimset('Display', 'off');
for i = 1:Ni,
split_point(i) = fminbnd('CARTfunctions', region(i*2-1), region(i*2), op, features, targets, i, split_type);
I(i) = feval_r('CARTfunctions', split_point(i), features, targets, i, split_type);
end

[m, dim] = min(I);
loc = split_point(dim);

%So, the split is to be on dimention 'dim' at location 'loc'
indices = 1:M;
tree.Raction= ['features(' num2str(dim) ',indices) > ' num2str(loc)];
tree.Laction= ['features(' num2str(dim) ',indices) <= ' num2str(loc)];
in_right = find(eval_r(tree.Raction));
in_left = find(eval_r(tree.Laction));

if isempty(in_right) | isempty(in_left)
%No possible split found
tree.right = [];
tree.left = [];
if (length(Nt) ~= 1),
MLlabel = find(N == max(N));
else
MLlabel = 1;
end
tree.Raction = Nt(MLlabel);
tree.Laction = Nt(MLlabel);
else
%...It's possible to build new nodes
tree.right = make_tree(features(:,in_right), targets(in_right), Dlength, split_type, inc_node, region);
tree.left = make_tree(features(:,in_left), targets(in_left), Dlength, split_type, inc_node, region);
end

end

⑵ 决策树算法 CART和C4.5决策树有什么区别各用于什么领域

1、C4.5算法是在ID3算法的基础上采用信息增益率的方法选择测试属性。CART算法采用一种二分递归分割的技术,与基于信息熵的算法不同,CART算法对每次样本集的划分计算GINI系数,GINI系数,GINI系数越小则划分越合理。
2、决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
3、决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪技:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

⑶ 决策树是什么东东

小白自学路上的备忘记录。。。

参考:
决策树(分类树、回归树)
决策树 :这个博客的图真好看,通俗易懂。哈哈
决策树详解

决策树(Decision Tree)是一种有监督学习算法,常用于分类和回归。本文仅讨论分类问题。

决策树模型是运用于分类以及回归的一种树结构。决策树由节点和有向边组成,一般一棵决策树包含一个根节点、若干内部节点和若干叶节点。决策树的决策过程需要从决策树的根节点开始,待测数据与决策树中的特征节点进行比较,并按照比较结果选择选择下一比较分支,直到叶子节点作为最终的决策结果。

简而言之,决策树是一个利用树的模型进行决策的多分类模型

为了找到最优的划分特征,我们需要先了解一些信息论的知识:

纯度
你可以把决策树的构造过程理解成为寻找纯净划分的过程。数学上,我们可以用纯度来表示,纯度换一种方式来解释就是让目标变量的分歧最小

信息熵 :表示信息的不确定度
在信息论中,随机离散事件出现的概率存在着不确定性。为了衡量这种信息的不确定性,信息学之父香农引入了信息熵的概念.
当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高
信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低

经典的 “不纯度”的指标有三种,分别是信息增益(ID3 算法)、信息增益率(C4.5 算法)以及基尼指数(Cart 算法)
信息增益
信息增益指的就是划分可以带来纯度的提高,信息熵的下降。它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。
信息增益率
信息增益率 = 信息增益 / 属性熵
基尼指数
基尼指数(基尼不纯度):表示在样本集合中一个随机选中的样本被分错的概率。
即 基尼指数(基尼不纯度)= 样本被选中的概率 * 样本被分错的概率
基尼系数的性质与信息熵一样:度量随机变量的不确定度的大小;
G 越大,数据的不确定性越高;
G 越小,数据的不确定性越低;
G = 0,数据集中的所有样本都是同一类别
详细参考: 机器学习——基尼指数

ID3 算法是建立在奥卡姆剃刀(用较少的东西,同样可以做好事情)的基础上:越是小型的决策树越优于大的决策树
ID3算法的核心是在决策树各个节点上根据信息增益来选择进行划分的特征,然后递归地构建决策树。算法采用自顶向下的贪婪搜索遍历可能的决策树空间。

具体方法

ID3的局限

C4.5与ID3相似,但大的特点是克服了 ID3 对特征数目的偏重这一缺点,引入信息增益率来作为分类标准。

C4.5的实现基于ID3的改进

信息增益率对可取值较少的特征有所偏好(分母越小,整体越大),因此 C4.5 并不是直接用增益率最大的特征进行划分,而是使用一个 启发式方法 :先从候选划分特征中找到信息增益高于平均值的特征,再从中选择增益率最高的。

C4.5的局限

ID3 和 C4.5 生成的决策树分支、规模都比较大,CART 算法的二分法可以简化决策树的规模,提高生成决策树的效率。
CART(),分类回归树算法,既可用于分类也可用于回归,在这一部分我们先主要将其分类树的生成。区别于ID3和C4.5,CART假设决策树是二叉树,内部节点特征的取值为“是”和“否”,左分支为取值为“是”的分支,右分支为取值为”否“的分支。这样的决策树等价于递归地二分每个特征,将输入空间(即特征空间)划分为有限个单元。
CART的分类树用基尼指数来选择最优特征的最优划分点,具体过程如下

剪枝就是给决策树瘦身,这一步想实现的目标就是,不需要太多的判断,同样可以得到不错的结果。之所以这么做,是为了防止“过拟合”(Overfitting)现象的发生。
过拟合:指的是模型的训练结果“太好了”,以至于在实际应用的过程中,会存在“死板”的情况,导致分类错误。
欠拟合:指的是模型的训练结果不理想.
剪枝的方法

参考: 【机器学习】决策树(上)——ID3、C4.5、CART(非常详细)

更多模型不断更新中。。。。

⑷ 用python实现红酒数据集的ID3,C4.5和CART算法

ID3算法介绍
ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)
该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。
但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。
信息熵、条件熵和信息增益
信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。
设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

为信息集合X的n个取值,则x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵为:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

条件熵:指已知某个随机变量的情况下,信息集合的信息熵。
设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

条件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和贝叶斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化简条件熵的计算公式为:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代码实现
import numpy as np
import math

def calShannonEnt(dataSet):
""" 计算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通过计算信息增益选择最合适的特征"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #计算条件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #计算信息增益

if infoGain >= bestInfoGain: #选择最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通过训练集生成决策树 """
featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一个类别
return classList[0]
if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #选择特征
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已选特征列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用训练所得的决策树进行分类 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #对该过程进行10000次
trainData, testData = train_test_split(data) #区分测试集和训练集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:

数据离散化
然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。
具体步骤如下:

对每个特征所包含的数值型特征值排序
对相邻两个特征值取均值,这些均值就是待选的划分点
用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益
选择信息使信息增益最大的划分点进行特征离散化
实现代码如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 对数据每个特征的数值型特征值进行离散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #对于每一个特征
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #对于每个划分点
subEntropy = 0.0 #计算该划分点的信息熵
for tag in range(2): #分别划分为两类
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 计算信息增益
infoGain = entropy - subEntropy
## 选择最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #对该过程进行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #区分测试集和训练集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化
for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
两者准确率分别为:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准确率分布如下:

两者的结果非常一样。
(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)

最后一次决策树图形如下:

决策树剪枝
由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。
对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下

C4.5算法
ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。
C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



则信息增益率为:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

关于ID3和C4.5算法
在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:

无法处理连续性特征数据
特征选取会倾向于分类较多的特征
没有解决过拟合的问题
没有解决缺失值的问题
即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:

通过信息最大增益的标准离散化连续的特征数据
在选择特征是标准从“最大信息增益”改为“最大信息增益率”
通过加入正则项系数对决策树进行剪枝
对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。
特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小
生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重
关于C4.5和CART回归树
作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:

C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。
C4.5的剪枝过于简单
C4.5只能用于分类运算不能用于回归
当特征有多个特征值是C4.5生成多叉树会使树的深度加深
————————————————
版权声明:本文为CSDN博主“Sarah Huang”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44794704/article/details/89406612

⑸ 决策树算法原理

决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。

一棵决策树的生成过程主要分为以下3个部分:

特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。

决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。

剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。

划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。

CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。

ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。

C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。

CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。

决策树算法的优点:

(1)便于理解和解释,树的结构可以可视化出来

(2)基本不需要预处理,不需要提前归一化,处理缺失值

(3)使用决策树预测的代价是O(log2m),m为样本数

(4)能够处理数值型数据和分类数据

(5)可以处理多维度输出的分类问题

(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能

(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好

决策树算法的缺点:

(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。

(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。

(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。

(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。

(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。

(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;

(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;

(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;

(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;

(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;

(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。

(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;

(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。

(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。

⑹ 决策树之CART算法

一、基本概念

1.cart使用基尼系数作为划分标准。基尼系数越小,则不纯度越低,区分的越彻底。

2.假设有k个类别,第k个类别的概率为 ,则基尼系数表达式为:

Gini(p)= (1- )=1-

3.对于样本D,如果根据特征A 的值把样本分为D1,D2两部分,则在特征A条件下,D的基尼系数

Gini(D,A)= Gini(D1)+  Gini(D2)

4.CART建立起来的是二叉树,如果特征A有A1,A2,A3三个类别,CART会考虑把A分成{A1},{A2 ,A3}两组,或者是其他两种情况。由于这次A并没有完全分开,所以下次还有机会在子节点把A2,A3分开.

5.对于连续值的切分.假如有1 2 3 4 5 那么cart会有4个切分点 [1.5  2.5  3.5  4.5]

二.实例推导树的建立过程

1.假设我有以下源数据

序号 天气 周末 促销 销量

1 坏 是 是 高

2 坏 是 是 高

3 坏 是 是 高

4 坏 否 是 高

5 坏 是 是 高

6 坏 否 是 高

7 坏 是 否 高

8 好 是 是 高

9 好 是 否 高

10 好 是 是 高

11 好 是 是 高

12 好 是 是 高

13 好 是 是 高

14 坏 是 是 低

15 好 否 是 高

16 好 否 是 高

17 好 否 是 高

18 好 否 是 高

19 好 否 否 高

20 坏 否 否 低

21 坏 否 是 低

22 坏 否 是 低

23 坏 否 是 低

24 坏 否 否 低

25 坏 是 否 低

26 好 否 是 低

27 好 否 是 低

28 坏 否 否 低

29 坏 否 否 低

30 好 否 否 低

31 坏 是 否 低

32 好 否 是 低

33 好 否 否 低

34 好 否 否 低

该数据集有三个特征  天气  周末   促销

2.为了简化建立树的过程,我将忽略基尼系数与样本个数阀值

2.1  首先计算各个特征值对数据集的基尼系数,公式见---- 基本概念.3

Gini(D|天气)=17/34*(1-(11/17)^2-(6/17)^2)+17/34*(1-(7/17)^2-(10/17)^2)=0.4706

Gini(D|周末)=20/34*(1-(7/20)^2-(13/20)^2)+14/34*(1-(11/14)^2-(3/14)^2)=0.4063

Gini(D|促销)=12/34*(1-(9/12)^2-(3/12)^2)+22/34*(1-(7/22)^2-(15/22)^2)=0.4131

周末的基尼系数最小,这也符合我们的一般认识

2.2  第一个分列特征选择周末。此时数据集按照是否周末分成两个。

Gini(周末|天气)=0.2679

Gini(周末|促销)=0.2714

Gini(非周末|天气)=0.3505

Gini(非周末|促销)=0.3875

此时,周末应该以天气作为划分,非周末也是以天气作为划分,下面放个图

三、CART树对于连续特征的处理

假如特征A为连续型变量,则把特征A按照从小到大进行排序,取相邻两点的平均值为切分点,计算基尼系数。则基尼系数最小的点为切分点,大于切分点的为一类,小于切分点的为另一类。举例:特征A的值为 1,2,3,4,5,6     目标变量是高、低、高、低、高、低。则1.5处的基尼系数为  (1/6)*(1-1^2)+(5/6)*(1-(2/5)^2-(3/5)^2)=0.4                                                2.5处的基尼系数为  (2/6)*(1-(1/2)^2-(1/2)^2)+(4/6)*(1-(2/4)^2-(2/4)^2)=0.5                              3.5处的基尼系数为   (3/6)*(1-(1/3)^2-(2/3)^2)+(3/6)*(1-(1/3)^2-(2/3)^2)=0.44                          4.5处的基尼系数为   (4/6)*(1-(2/4)^2-(2/4)^2)+(2/6)*(1-(1/2)^2-(1/2)^2)=0.5                            5.5处的基尼系数为    (5/6)*(1-(2/5)^2-(3/5)^2)+(1/6)*(1-1^2)=0.4                                          结论:  1.5和5.5处的基尼系数最小,可以把1分为一类,2-6分为另一类。或者6分为一类,1-5另一类。

四、关于回归树

1.回归树和分类树的区别在于输出值类型不同。分类树输出的是离散值,回归树输出的是连续值。

2.和分类树使用基尼系数不同,回归树使用和均方差来度量最佳分隔点。假设有1 2 3 4 5 6 六个数。假设3.5处把数据分开最合适,那么(1-2)^2+(2-2)^2+(3-2)^2+(4-5)^2+(5-5)^2+(6-5)^2在所有分割点中取得最小值。2,5为各自数据段的平均值。

3.回归树采用最后叶子的平均值或者中值作为输出结果

⑺ R语言-17决策树

是一个预测模型,分为回归决策树和分类决策树,根据已知样本训练出一个树模型,从而根据该模型对新样本因变量进行预测,得到预测值或预测的分类

从根节点到叶节点的一条路径就对应着一条规则.整棵决策树就对应着一组表达式规则。叶节点就代表该规则下得到的预测值。如下图决策树模型则是根据房产、结婚、月收入三个属性得到是否可以偿还贷款的规则。

核心是如何从众多属性中挑选出具有代表性的属性作为决策树的分支节点。

最基本的有三种度量方法来选择属性

1. 信息增益(ID3算法)

信息熵

一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之不确定性就大。不确定性函数f是概率P的 减函数 。两个独立符号所产生的不确定性应等于各自不确定性之和,即f(P1,P2)=f(P1)+f(P2),这称为可加性。同时满足这两个条件的函数f是对数函数,即

在信源中,考虑的不是某一单个符号发生的不确定性,而是要考虑这个信源所有可能发生情况的平均不确定性。因此,信息熵被定义为

决策树分类过程

2、增益率(C4.5算法)
由于信息增益的缺点是:倾向于选择具有大量值的属性,因为具有大量值的属性每个属性对应数据量少,倾向于具有较高的信息纯度。因此增益率使用【信息增益/以该属性代替的系统熵(类似于前面第一步将play换为该属性计算的系统熵】这个比率,试图克服这种缺点。
g(D,A)代表D数据集A属性的信息增益,

3. 基尼指数(CART算法)

基尼指数:

表示在样本集合中一个随机选中的样本被分错的概率。越小表示集合中被选中的样本被分错的概率越小,也就是说集合的纯度越高。

假设集合中有K个类别,则:

说明:

1. pk表示选中的样本属于k类别的概率,则这个样本被分错的概率是(1-pk)

2. 样本集合中有K个类别,一个随机选中的样本可以属于这k个类别中的任意一个,因而对类别就加和

3. 当为二分类是,Gini(P) = 2p(1-p)

基尼指数是将属性A做二元划分,所以得到的是二叉树。当为离散属性时,则会将离散属性的类别两两组合,计算基尼指数。

举个例子:

如上面的特征Temperature,此特征有三个特征取值: “Hot”,“Mild”, “Cool”,
当使用“学历”这个特征对样本集合D进行划分时,划分值分别有三个,因而有三种划分的可能集合,划分后的子集如下:

对于上述的每一种划分,都可以计算出基于 划分特征= 某个特征值 将样本集合D划分为两个子集的纯度:

决策数分类过程

先剪枝 :提前停止树的构建对树剪枝,构造树时,利用信息增益、统计显着性等,当一个节点的划分导致低于上述度量的预定义阈值时,则停止进一步划分。但阈值的确定比较困难。
后剪枝 :更为常用,先得到完全生长的树,再自底向上,用最下面的节点的树叶代替该节点
CART使用代价复杂度剪枝算法 :计算每个节点剪枝后与剪枝前的代价复杂度,如果剪去该节点,代价复杂度较小(复杂度是树的结点与树的错误率也就是误分类比率的函数),则剪去。
C4.5采用悲观剪枝 :类似代价复杂度,但CART是利用剪枝集评估代价复杂度,C4.5是采用训练集加上一个惩罚评估错误率

决策树的可伸缩性

ID3C4.5CART都是为较小的数据集设计,都限制训练元祖停留再内存中,为了解决可伸缩性,提出了其它算法如
RainForest(雨林):对每个属性维护一个AVC集,描述该结点的训练元组,所以只要将AVC集放在内存即可
BOAT自助乐观算法:利用统计学,创造给定训练数据的较小样本,每个样本构造一个树,导致多颗树,再利用它们构造1颗新树。优点是可以增量的更新,当插入或删除数据,只需决策树更新,而不用重新构造。

决策树的可视化挖掘
PBC系统可允许用户指定多个分裂点,导致多个分支,传统决策树算法数值属性都是二元划分。并且可以实现交互地构建树。

rpart是采用cart算法,连续型“anova”;离散型“class”;

2)进行剪枝的函数:prune()

3)计算MAE评估回归树模型误差,这里将样本划分成了训练集和测试集,testdata为测试集
rt.mae为根据训练集得到的决策树模型对测试集因变量预测的结果与测试集因变量实际值得到平均绝对误差

⑻ 决策树算法 CART和C4.5决策树有什么区别各用于什么领域

1、C4.5算法是在ID3算法的基础上采用信息增益率的方法选择测试属性。CART算法采用一种二分递归分割的技术,与基于信息熵的算法不同,CART算法对每次样本集的划分计算GINI系数,GINI系数,GINI系数越小则划分越合理。
2、决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
3、决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪技:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

⑼ 决策树原理及算法比较

决策树是什么?

    和线性回归一样是一种模型,内部节点和叶节点。实现分类,内部节点和叶节点通过有向线(分类规      则)连接起来

决策树的目标是什么?

    决策树通过对数据复杂度的计算,建立特征分类标准,确定最佳分类特征。

    表现为“熵”(entropy)和信息增益(information gain),基于决策树思想的三种算法:ID3,C4.5,CART算法,三种算法的信息衡量的指标也不同.

    熵来表示信息的复杂度,熵越大,信息也就越复杂,公式如下:

那些算法能够实现决策树?

    在决策树构建过程中,什么是比较重要的。特征选择(按照熵变计算),算法产生最重要的部分,

决策树中叶节点的分类比较纯,

节点顺序的排列规则:

熵变:

数据的预处理:

改进思路一般有两个1,换算法;2,调参数

做好数据的预处理:

1,做好特征选择;

2,做好数据离散化、异常值处理、缺失填充

分类器:

在决策树中,从根到达任意一个叶节点的之间最长路径的长度,表示对应的算法排序中最坏情况下的比较次数。这样一个比较算法排序中的最坏情况的比较次数就与其决策树的高度相同,同时如果决策树中每种排列以可达叶子的形式出现,那么关于其决策树高度的下界也就是关于比较排序算法运行时间的下界,

ID3算法存在的缺点:

    1,ID3算法在选择根节点和内部节点分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性

    2,当数据为连续性变量的时候,ID3算法就不是一个合理的算法的模型了

C4.5信息增益比率,

     1,在信息增益的基础上除以split-info,是将信息增益改为信息增益比,以解决取值较多的属性的问题,另外它还可以处理连续型属性,其判别标准是θ,

      2,C4.5算法利用增益/熵值,克服了树生长的过程中,总是‘贪婪’选择变量分类多的进行分类

      3,处理来内需型变量,C4.5的分类树的分支就是两条

衡量指标:

(1)信息增益

基于ID3算法的信息增益对于判定连续型变量的时候病不是最优选择,C4.5算法用了信息增益率这个概念。

分类信息类的定义如下:

这个值表示将训练数据集D划分成对应属性A测试的V个输出v个划分产生的信息,信息增益率定义为:

选择最大信息增益率的属性作为分裂属性

Gini指标,CART

表明样本的“纯净度”。Gini系数避免了信息增益产生的问题,

过拟合问题,非常好的泛化能力,有很好的推广能力

Gini系数的计算:

在分类问题中,假设有k个类,样本点属于第k类的概率为Pk,则概率分布的gini指数的定义为:

如果样本集合D根据某个特征A被分割为D1,D2两个部分,那么在特征A的提哦啊见下,集合D的gini指数的定义为:

Gini指数代表特征A不同分组下的数据集D的不确定性,gini指数越大,样本集合的不确定性也就越大,这一点和熵的概念相类似

决策树原理介绍:

第三步:对于每个属性执行划分:

(1)该属性为离散型变量

记样本中的变量分为m中

穷举m种取值分为两类的划分

对上述所有划分计算GINI系数

(2)该属性为连续型变量

将数据集中从小到大划分

按顺序逐一将两个相临值的均值作为分割点

对上述所有划分计算GINI系数

学历的划分使得顺序的划分有个保证,化为连续型变量处理。

决策树的生成算法分为两个步骤:

预剪枝和后剪枝  CCP(cost and complexity)算法:在树变小和变大的的情况有个判断标准。误差率增益值:α值为误差的变化

决策树的终止条件:

      1,某一个节点的分支所覆盖的样本都是同一类的时候

      2,某一个分支覆盖的样本的个数如果小于一个阈值,那么也可以产生叶子节点,从而终止Tree-Growth

确定叶子结点的类:

      1,第一种方式,叶子结点覆盖的样本都属于同一类

      2, 叶子节点覆盖的样本未必是同一类,所占的大多数,那么该叶子节点的类别就是那个占大多数的类

阅读全文

与cart算法的实现相关的资料

热点内容
自己购买云主服务器推荐 浏览:422
个人所得税java 浏览:761
多余的服务器滑道还有什么用 浏览:192
pdf劈开合并 浏览:29
不能修改的pdf 浏览:752
同城公众源码 浏览:489
一个服务器2个端口怎么映射 浏览:298
java字符串ascii码 浏览:79
台湾云服务器怎么租服务器 浏览:475
旅游手机网站源码 浏览:332
android关联表 浏览:946
安卓导航无声音怎么维修 浏览:333
app怎么装视频 浏览:431
安卓系统下的软件怎么移到桌面 浏览:96
windows拷贝到linux 浏览:772
mdr软件解压和别人不一样 浏览:904
单片机串行通信有什么好处 浏览:340
游戏开发程序员书籍 浏览:860
pdf中图片修改 浏览:288
汇编编译后 浏览:491