⑴ 用Dijkstra算法求图中从顶点a到其他各顶点间的最短路径,并写出执行算法过程中各步的状态。
迪克斯加(Dijkstra)算法(最短路径算法)是由荷兰计算机科学家艾兹格·迪科斯彻发现的。算法解决的是有向图中任意两个顶点之间的最短路径问题。
举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。 迪科斯彻算法可以用来找到两个城市之间的最短路径。
迪科斯彻算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。 我们以V表示G中所有顶点的集合。 每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。 我们以E所有边的集合,而边的权重则由权重函数w: E → [0, ∞]定义。 因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。 边的花费可以想象成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。 已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e. 最短路径)。 这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径
这个算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。初始时,源点s的路径长度值被赋为0(d[s]=0), 同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有顶点v除s外d[v]= ∞)。当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。 Dijstra算法的基础操作是边的拓展:如果存在一条从u到v的边,那么从s到v的最短路径可以通过将边(u,v)添加到尾部来拓展一条从s到u的路径。这条路径的长度是d+w(u,v)。如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。拓展边的操作一直执行到所有的d[v]都代表从s到v最短路径的花费。这个算法经过组织因而当d达到它最终的值的时候每条边(u,v)都只被拓展一次。
算法维护两个顶点集S和Q。集合S保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d值的顶点。当一个顶点u从Q中转移到了S中,算法对每条外接边(u,v)进行拓展。program dijkstra;
var
state:array[1..100]of boolean;
data:array[1..100,1..100]of longint;
n,i,j,k,min,node:longint;
begin
assign(input,'dijkstra.in');
assign(output,'dijkstra.out');
reset(input);
rewrite(output);
fillchar(data, sizeof(data), 0);
fillchar(state,sizeof(state),0);
readln(n);
for i:=1 to n do
for j:=1 to n do
begin
read(data[i,j]);
if data[i,j]=0 then data[i,j]:=maxint;
end;
state[1]:=true;
for k:=2 to n do
begin
min:=maxint;
{查找权值最小的点为node}
node:=1;
for i:=2 to n do
if (data[1,i]<min)and(state[i]=false) then
begin
min:=data[1,i];
node:=i;
end;
{更新其他各点的权值}
state[node]:=true;
for j:=1 to n do
if (data[1,node]+data[node,j]<data[1,j]) and (state[j]=false) then
data[1,j]:=data[1,node]+data[node,j];
end;
for i:=1 to n-1 do
if data[1,i]<>maxint then
write(data[1,i],' ')
else
write(-1,' ');
writeln(data[1,n]);
close(input);
close(output);
end.
⑵ 图遍历算法之最短路径Dijkstra算法
最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:
常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。
Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决着名的旅行商问题。
问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。
为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。
以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):
注:
01) 是已计算出最短路径的顶点集合;
02) 是未计算出最短路径的顶点集合;
03) 表示顶点 到顶点 的最短距离为3
第1步 :选取顶点 添加进
第2步 :选取顶点 添加进 ,更新 中顶点最短距离
第3步 :选取顶点 添加进 ,更新 中顶点最短距离
第4步 :选取顶点 添加进 ,更新 中顶点最短距离
第5步 :选取顶点 添加进 ,更新 中顶点最短距离
第6步 :选取顶点 添加进 ,更新 中顶点最短距离
第7步 :选取顶点 添加进 ,更新 中顶点最短距离
示例:node编号1-7分别代表A,B,C,D,E,F,G
(s.paths <- shortest.paths(g, algorithm = "dijkstra"))输出结果:
(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))输出结果:
示例:
找到D(4)到G(7)的最短路径:
[1] 维基网络,最短路径问题: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/
⑶ D*算法的其他方法
3.用A*或其它算法计算,这里假设用A*算法,遍历Y的子节点,点放入CLOSE,调整Y的子节点a的h值,h(a)=h(Y)+Y到子节点a的权重C(Y,a),比较a点是否存在于OPEN和CLOSE中,方法如下:
while()
{
从OPEN表中取k值最小的节点Y;
遍历Y的子节点a,计算a的h值 h(a)=h(Y)+Y到子节点a的权重C(Y,a)
{
if(a in OPEN) 比较两个a的h值
if( a的h值小于OPEN表a的h值 )
{更新OPEN表中a的h值;k值取最小的h值
有未受影响的最短路经存在
break;
}
if(a in CLOSE) 比较两个a的h值 //注意是同一个节点的两个不同路径的估价值
if( a的h值小于CLOSE表的h值 )
{
更新CLOSE表中a的h值; k值取最小的h值;将a节点放入OPEN表
有未受影响的最短路经存在
break;
}
if(a not in both)
将a插入OPEN表中;//还没有排序
}
放Y到CLOSE表;
OPEN表比较k值大小进行排序;
}
机器人利用第一步Dijstra计算出的最短路信息从a点到目标点的最短路经进行。
D*算法在动态环境中寻路非常有效,向目标点移动中,只检查最短路径上下一节点或临近节点的变化情况,如机器人寻路等情况。对于距离远的最短路径上发生的变化,则感觉不太适用。
⑷ C++实现D算法F算法求最短路径具体程序
/* 用邻接矩阵表示的图的Dijkstra算法的源程序*/
#include<stdio.h>
#define MAXVEX 100
typedef char VexType;
typedef float AdjType;
typedef struct
{ VexType vexs[MAXVEX]; /* 顶点信息 */
AdjType arcs[MAXVEX][MAXVEX]; /* 边信息 */
int n; /* 图的顶点个数 */
}GraphMatrix;
GraphMatrix graph;
typedef struct {
VexType vertex; /* 顶点信息 */
AdjType length; /* 最短路径长度 */
int prevex; /* 从v0到达vi(i=1,2,…n-1)的最短路径上vi的前趋顶点 */
}Path;
Path dist[6]; /* n为图中顶点个数*/
#define MAX 1e+8
void init(GraphMatrix* pgraph, Path dist[])
{
int i; dist[0].length=0; dist[0].prevex=0;
dist[0].vertex=pgraph->vexs[0];
pgraph->arcs[0][0]=1; /* 表示顶点v0在集合U中 */
for(i=1; i<pgraph->n; i++) /* 初始化集合V-U中顶点的距离值 */
{ dist[i].length=pgraph->arcs[0][i];
dist[i].vertex=pgraph->vexs[i];
if(dist[i].length!=MAX)
dist[i].prevex=0;
else dist[i].prevex= -1;
}
}
void dijkstra(GraphMatrix graph, Path dist[])
{ int i,j,minvex; AdjType min;
init(&graph,dist); /* 初始化,此时集合U中只有顶点v0*/
for(i=1; i<graph.n; i++)
{ min=MAX; minvex=0;
for(j=1; j<graph.n; j++)
if( (graph.arcs[j][j]==0) && (dist[j].length<min) ) /*在V-U中选出距离值最小顶点*/
if(minvex==0) break; /* 从v0没有路径可以通往集合V-U中的顶点 */
graph.arcs[minvex][minvex]=1; /* 集合V-U中路径最小的顶点为minvex */
for(j=1; j<graph.n; j++) /* 调整集合V-U中的顶点的最短路径 */
{ if(graph.arcs[j][j]==1) continue;
if(dist[j].length>dist[minvex].length+graph.arcs[minvex][j])
{ dist[j].length=dist[minvex].length+graph.arcs[minvex][j];
dist[j].prevex=minvex;
}
}
}
}
void initgraph()
{
int i,j;
graph.n=6;
for(i=0;i<graph.n;i++)
for(j=0;j<graph.n;j++)
graph.arcs[i][j]=(i==j?0:MAX);
graph.arcs[0][1]=50;
graph.arcs[0][2]=10;
graph.arcs[1][2]=15;
graph.arcs[1][4]=5;
graph.arcs[2][0]=20;
graph.arcs[2][3]=15;
graph.arcs[3][1]=20;
graph.arcs[3][4]=35;
graph.arcs[4][3]=30;
graph.arcs[5][3]=3;
graph.arcs[0][4]=45;
}
int main()
{
int i;
initgraph();
dijkstra(graph,dist);
for(i=0;i<graph.n;i++)
printf("(%.0f %d)",dist[i].length,dist[i].prevex);
return 0;
}
}
}
}
void initgraph()
{
int i,j;
graph.n=6;
for(i=0;i<graph.n;i++)
for(j=0;j<graph.n;j++)
graph.arcs[i][j]=(i==j?0:MAX);
graph.arcs[0][1]=50;
graph.arcs[0][2]=10;
graph.arcs[1][2]=15;
graph.arcs[1][4]=5;
graph.arcs[2][0]=20;
graph.arcs[2][3]=15;
graph.arcs[3][1]=20;
graph.arcs[3][4]=35;
graph.arcs[4][3]=30;
graph.arcs[5][3]=3;
graph.arcs[0][4]=45;
}
int main()
{
int i;
initgraph();
dijkstra(graph,dist);
for(i=0;i<graph.n;i++)
printf("(%.0f %d)",dist[i].length,dist[i].prevex);
return 0;
}
这个稍作改动就可以了。
⑸ 用dijkstra算法计算源点到个结点的最短路径....谢谢亲爱的朋友~ 详细答案
(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)
1. 置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2. 在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3
3. 对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2
⑹ dijakstra算法和分支限算法在解决单源最短路径问题的异同
记dijakstra算法为D算法
D算法为贪心算法,每一步的选择为当前步的最优,复杂度为O(n*n) (又叫爬山法)
分支限界算法,每一步的扩散为当前耗散度的最优,复杂度为(没算)
都是A算法的极端情况
(说错了哈,下面我的文字中的的分支限界算法实际上是在说动态规划法,我查了一下书,动态规划法是对分支限界法的改进,分支限界法不属于A算法(启发式搜索算法),但是这时用动态规划法和D算法比较也是有可比性的,而直接用分支限界算法和D算法比较也是可以的)
关键词:耗散度 评估函数
即:对当前优先搜索方向的判断标准为,有可能的最优解
而最优解可以用一个评估函数来做,即已经有的耗散度加上以后有可能的耗度
A算法就是把两个耗散度加在一起,作为当前状态的搜索搜索方向;
但是对以后的耗散度的评估是麻烦的,D算法就是把当前有的路的最短的作为,以后耗散度的评估.
分支限界算法就是只以以前的耗散度为评估函数
你给的两个算法当然是A算法的特例
你还可以参考一下 A*算法 修正的A*算法,相信对你的编程水平有帮助
参考:
队列式分支限界法的搜索解空间树的方式类似于解空间树的宽度优先搜索,不同的是队列式分支限界法不搜索以不可行结点(已经被判定不能导致可行解或不能导致最优解的结点)为根的子树。按照规则,这样的结点不被列入活结点表。
优先队列式分支限界法的搜索方式是根据活结点的优先级确定下一个扩展结点。结点的优先级常用一个与该结点有关的数值p来表示。最大优先队列规定p值较大的结点点的优先级较高。在算法实现时通常用一个最大堆来实现最大优先队列,体现最大效益优先的原则。类似地,最小优先队列规定p值较小的结点的优先级较高。在算法实现时,常用一个最小堆来实现,体现最小优先的原则。采用优先队列式分支定界算法解决具体问题时,应根据问题的特点选用最大优先或最小优先队列,确定各个结点点的p值。
⑺ 最短路径弗洛德算法怎么理解
Dijkstra算法,A*算法和D*算法
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A* 算法和 D* 算法表述一致,这里均采用OPEN,CLOSE表的方式。
大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
3. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。
提高Dijkstra搜索速度的方法很多,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。
A*(A-Star)算法是一种启发式算法,是静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}
A*算法和Dijistra算法的区别在于有无估价值,Dijistra算法相当于A*算法中估价值为0的情况。
动态路网,最短路算法 D*A* 在静态路网中非常有效(very efficient for static worlds),但不适于在动态路网,环境如权重等不断变化的动态环境下。
D*是动态A*(D-Star,Dynamic A*) 卡内及梅隆机器人中心的Stentz在1994和1995年两篇文章提出,主要用于机器人探路。是火星探测器采用的寻路算法。
主要方法:
1.先用Dijstra算法从目标节点G向起始节点搜索。储存路网中目标点到各个节点的最短路和该位置到目标点的实际值h,k(k为所有变化h之中最小的值,当前为k=h。每个节点包含上一节点到目标点的最短路信息1(2),2(5),5(4),4(7)。则1到4的最短路为1-2-5-4。
原OPEN和CLOSE中节点信息保存。
2.机器人沿最短路开始移动,在移动的下一节点没有变化时,无需计算,利用上一步Dijstra计算出的最短路信息从出发点向后追述即可,当在Y点探测到下一节点X状态发生改变,如堵塞。机器人首先调整自己在当前位置Y到目标点G的实际值h(Y),h(Y)=X到Y的新权值c(X,Y)+X的原实际值h(X).X为下一节点(到目标点方向Y->X->G),Y是当前点。k值取h值变化前后的最小。
3.用A*或其它算法计算,这里假设用A*算法,遍历Y的子节点,点放入CLOSE,调整Y的子节点a的h值,h(a)=h(Y)+Y到子节点a的权重C(Y,a),比较a点是否存在于OPEN和CLOSE中,方法如下:
while()
{
从OPEN表中取k值最小的节点Y;
遍历Y的子节点a,计算a的h值 h(a)=h(Y)+Y到子节点a的权重C(Y,a)
{
if(a in OPEN) 比较两个a的h值
if( a的h值小于OPEN表a的h值 )
{ 更新OPEN表中a的h值;k值取最小的h值
有未受影响的最短路经存在
break;
}
if(a in CLOSE) 比较两个a的h值 //注意是同一个节点的两个不同路径的估价值
if( a的h值小于CLOSE表的h值 )
{
更新CLOSE表中a的h值; k值取最小的h值;将a节点放入OPEN表
有未受影响的最短路经存在
break;
}
if(a not in both)
将a插入OPEN表中; //还没有排序
}
放Y到CLOSE表;
OPEN表比较k值大小进行排序;
}
机器人利用第一步Dijstra计算出的最短路信息从a点到目标点的最短路经进行。
D*算法在动态环境中寻路非常有效,向目标点移动中,只检查最短路径上下一节点或临近节点的变化情况,如机器人寻路等情况。对于距离远的最短路径上发生的变化,则感觉不太适用。
⑻ Dijkstra算法算最短路径
////////////////////////////////////////////////////////////
// Graph.h
#pragma once
#define maxPoint 100
class CGraph
{
public:
CGraph(void);
~CGraph(void);
bool SetGraph( double g[maxPoint][maxPoint] , int startPoint , int size );
bool Dijkstra();
void Display();
int GetStartPoint();
double GetBestWay( int dest , int path[] , int &pathLen );
private:
//标志当前图是否已经求解
bool solved;
//当前图布局
double graph[maxPoint][maxPoint];
//地图大小
int size;
//起点
int startPoint;
//当前图的解
double dist[maxPoint];
int prev[maxPoint];
};
////////////////////////////////////////////////////////////
// Graph.cpp
#include 'StdAfx.h'
#include '.\graph.h'
CGraph::CGraph(void)
{
for( int i = 0 ; i < maxPoint ; i++ )
{
for( int j = 0 ; j < maxPoint ; j++ )
graph[i][j] = -1;
}
startPoint = -1;
size = -1;
//当前图还没有求解
solved = false;
}
CGraph::~CGraph(void)
{
}
//
//
bool CGraph::SetGraph( double g[maxPoint][maxPoint] , int startPoint , int size )
{
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
graph[i][j] = g[i][j];
}
this->startPoint = startPoint;
this->size = size;
solved = false;
Dijkstra();
return true;
}
//
//
bool CGraph::Dijkstra()
{
bool s[maxPoint];
for( int j = 0 ; j < size ; j++ )
{
dist[j] = graph[startPoint][j];
s[j] = false;
//dist[i]<0,表示没有路径连接 结点startPoint 与 结点j
if( dist[j] < 0 )
prev[j] = 0;
else
prev[j] = startPoint;
}
//从起点出发
dist[startPoint] = 0;
s[startPoint] = true;
for( int i = 0 ; i < size ; i++ )
{
double temp;
int u = startPoint;
bool flag = false;
for( int j = 0 ; j < size ; j++ )
{
if( !s[j] )
{
//如果不是第一次比较,temp u,都已经赋值,则
if( flag )
{
if( dist[j] > 0 && dist[j] < temp )
{
u = j;
temp = dist[j];
}
}
else
{
u = j;
temp = dist[j];
flag = true;
}
}
}
s[u] = true;
for( int j = 0 ; j < size ; j++ )
{
if( !s[j] && graph[u][j] > 0 )
{
double newDist = dist[u] + graph[u][j];
if( dist[j] < 0 || newDist < dist[j] )
{
dist[j] = newDist;
prev[j] = u;
}
}
}
}
//标记当前问题已经解决
solved = true;
return true;
}
//
//
void CGraph::Display()
{
printf( '当前地图的邻接矩阵\n' );
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
{
printf( '%5.f' , graph[i][j] );
}
printf( '\n' );
}
}
//
//
double CGraph::GetBestWay( int dest , int path[] , int &pathLen )
{
int p = dest;
int theway[maxPoint];
int len = 0;
while( p != startPoint )
{
theway[len] = p;
p = prev[p];
len++;
}
theway[len] = startPoint;
len++;
for( int i = 0 , j = len - 1 ; i < len ; i++ , j-- )
path[i] = theway[j];
pathLen = len;
return dist[dest];
}
//
//
int CGraph::GetStartPoint()
{
return startPoint;
}
//
////////////////////////////////////////////////////////////
// Dijkstra.cpp : 定义控制台应用程序的入口点。
//
#include 'stdafx.h'
#include 'conio.h'
#include 'Graph.h'
int _tmain(int argc, _TCHAR* argv[])
{
double graph[][maxPoint] =
{
{ 1 , 10 , -1 , 30 , 100 } ,
{ -1 , 0 , 50 , -1 , -1 } ,
{ -1 , -1 , 0 , -1 , 10 } ,
{ -1 , -1 , 20 , 0 , 60 } ,
{ -1 , -1 , -1 , -1 , -1 }
};
int size = 5;
int start = 0;
int dest = 1;
int pathlen;
int path[maxPoint];
double dist;
CGraph g;
g.SetGraph( graph , start , size );
g.Display();
printf( '----------------------------------------\n' );
for( dest = 0 ; dest < size ; dest++ )
{
dist = g.GetBestWay( dest , path , pathlen );
printf( '从 %d 到 %d 的最短路径长 %.f\n' , g.GetStartPoint() , dest , dist );
printf( '所经结点为:\n' );
for( int i = 0 ; i < pathlen ; i++ )
printf( '%3d' , path[i] );
printf( '\n----------------------------------------\n' );
}
getch();
return 0;
}
////////////////////////////////////////////////////////////
// 程序说明:
// 本程序在 VC++.NET 2003 上调试通过
// 首先建立 Win32控制台应用程序,工程名为 Dijkstra
// 工程设置默认
// 添加 一般C++类 CGraph
// 填写以上内容
⑼ 计算机网络的最短路径算法有哪些对应哪些协议
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
Dijkstra算法、A*算法、SPFA算法、Bellman-Ford算法和Floyd-Warshall算法,本文主要介绍其中的三种。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:
确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
全局最短路径问题:求图中所有的最短路径。
Floyd
求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。
Floyd-Warshall的原理是动态规划:
设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。
若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;
若最短路径不经过点k,则Di,j,k = Di,j,k-1。
因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。
在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。
Floyd-Warshall算法的描述如下:
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
if (Di,k + Dk,j < Di,j) then
Di,j ← Di,k + Dk,j;
其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。
Dijkstra
求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。
当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
Bellman-Ford
求单源最短路,可以判断有无负权回路(若有,则不存在最短路),时效性较好,时间复杂度O(VE)。
Bellman-Ford算法是求解单源最短路径问题的一种算法。
单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。
与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。设想从我们可以从图中找到一个环
路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA
是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k< 与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。
与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA。