导航:首页 > 源码编译 > matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

发布时间:2022-10-28 10:14:49

A. 在matlab中做模糊C均值聚类(fcm)算法如何体现初始隶属度

它的程序里面是用rand函数随机初始化了一个矩阵N*c,然后对这个随机矩阵进行归一化,即满足一行(也可能是列记不清楚了),反正是让它满足隶属度的每个样本属于所有类隶属度为1的条件。用这个矩阵进行初始化,计算新的中心 新的隶属度 新的中心。。。。 知道满足阈值。matlab里面自己有函数一招就能找到

B. MATLAB基于模糊聚类分析方法

function Z=hecheng(X,X)
[m,m]=size(X);z=zeros(m,m);p4=zeros(1,m);
for i=1:m
for j=1:m
for k=1:m
p4(1,k)=min(X(i,k),Y(k,j));
end
Z(i,j)=max(p4);
end
end
应该能用!

C. k均值聚类算法、c均值聚类算法、模糊的c均值聚类算法的区别

k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;
模糊的c均值聚类算法:-------- 一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何一个数,提出的基本根据是“类内加权误差平方和最小化”准则;
这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。
至于c均值似乎没有这么叫的,至少从我看到文献来看是没有。不必纠结于名称。如果你看的是某本模式识别的书,可能它想表达的意思就是k均值。
实际上k-means这个单词最先是好像在1965年的一篇文献提出来的,后来很多人把这种聚类叫做k均值。但是实际上十多年前就有了类似的算法,但是名字不一样,k均值的历史相当的复杂,在若干不同的领域都被单独提出。追寻算法的名称与历史没什么意义,明白具体的实现方法就好了。

D. 在matlab里怎样对散点图做模糊C均值聚类,和模糊聚类

加上下面这些就行,过去吧;我运行过了
%%%%%%%%%%%%%%%%%%%%
data = [x',y'];
c =2; % 聚类个数
[center,U,obj_fcn] = fcm(data, c);
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
figure,hold on;
plot(data(index1,1),data(index1, 2),'r.');
plot(data(index2,1),data(index2, 2),'g.');
plot(center(1,1),center(1,2),'b+');
plot(center(2,1),center(2,2),'b+');

E. 模糊c均值算法matlab程序

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;

if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!');
end

data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度
% 默认操作参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志

if nargin == 2,
options = default_options;
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option;
if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!');
end
end
%将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end

iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];

% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);

% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo ---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo; % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
dist = distfcm(center, data); % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式

% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out ---- 距离
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end

F. matlab中的功能函数FCM如何使用

模糊C均值聚类算法,可将输入的数据集data聚为指定的cluster_n类

【函数描述】
语法格式
[center, U, obj_fcn] = FCM(data, cluster_n, options)

用法:
1. [center,U,obj_fcn] = FCM(Data,N_cluster,options);
2. [center,U,obj_fcn] = FCM(Data,N_cluster);

输入变量
data ---- n*m矩阵,表示n个样本,每个样本具有m维特征值
cluster_n ---- 标量,表示聚合中心数目,即类别数
options ---- 4*1列向量,其中
options(1): 隶属度矩阵U的指数,>1(缺省值: 2.0)
options(2): 最大迭代次数(缺省值: 100)
options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)
options(4): 每次迭代是否输出信息标志(缺省值: 0)

输出变量
center ---- 聚类中心
U ---- 隶属度矩阵
obj_fcn ---- 目标函数值

G. matlab中聚类算法

聚类分析的概念主要是来自多元统计分析,例如,考虑二维坐标系上有散落的许多点,这时,需要对散点进行合理的分类,就需要聚类方面的知识。模糊聚类分析方法主要针对的是这样的问题:对于样本空间P中的元素含有多个属性,要求对其中的元素进行合理的分类。最终可以以聚类图的形式加以呈现,而聚类图可以以手式和自动生成两种方式进行,这里采用自动生成方式,亦是本文的程序实现过程中的一个关键环节。 这里所实现的基本的模糊聚类的主要过程是一些成文的方法,在此简述如下: 对于待分类的一个样本集U=,设其中的每个元素有m项指标,则可以用m维向量描述样本,即:ui=(i=1,2,...,n)。则其相应的模糊聚类按下列步骤进行:1) 标准化处理,将数据压缩至(0-1)区间上,这部分内容相对简单,介绍略。(参[1])2) 建立模糊关系:这里比较重要的环节之一,首先是根据逗距离地或其它进行比较的观点及方法建立模糊相似矩阵,主要的逗距离地有:Hamming 距离: d(i,j)=sum(abs(x(i,k)-x(j,k))) | k from 1 to m (| k from 1 to m表示求和式中的系数k由1增至m,下同)Euclid 距离: d(i,j)=sum((x(i,k)-x(j,k))^2) | k from 1 to m 非距离方法中,最经典的就是一个夹角余弦法: 最终进行模糊聚类分析的是要求对一个模糊等价矩阵进行聚类分析,而由相似矩阵变换到等价矩阵,由于相似矩阵已满足对称性及自反性,并不一定满足传递性,则变换过程主要进行对相似矩阵进行满足传递性的操作。使关系满足传递性的算法中,最出名的,就是Washall算法了,又称传递闭包法(它的思想在最短路的Floyd算法中亦被使用了)。 算法相当简洁明了,复杂度稍大:O(log2(n)*n^3),其实就是把一个方阵的自乘操作,只不过这里用集合操作的交和并取代了原先矩阵操作中的*和+操作,如下:(matlab代码)%--washall enclosure algorithm--%unchanged=0;while unchanged==0 unchanged=1; %--sigma:i=1:n(combine(conj(cArr(i,k),cArr(k,j)))) for i=1:cArrSize for j=1:cArrSize mergeVal=0; for k=1:cArrSize if(cArr(i,k)<=cArr(k,j)&&cArr(i,k)>mergeVal) mergeVal=cArr(i,k); elseif(cArr(i,k)>cArr(k,j)&&cArr(k,j)>mergeVal) mergeVal=cArr(k,j); end end if(mergeVal>cArr(i,j)) CArr(i,j)=mergeVal; unchanged=0; else CArr(i,j)=cArr(i,j); end end end %-- back--% for i=1:cArrSize for j=1:cArrSize cArr(i,j)=CArr(i,j); end endend

H. MATLAB中图形轮廓提取的C均值聚类算法FCM出错,用其他图片就可以出结果,换成医学图片就不行了

医学图片的数据结构与一般的图片不一样,须专门编程

I. 遗传算法改进的模糊C-均值聚类MATLAB源码范例

function [BESTX,BESTY,ALLX,ALLY]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函数实现遗传算法,用于模糊C-均值聚类
%% 输入参数列表
% K 迭代次数
% N 种群规模,要求是偶数
% Pm 变异概率
% LB 决策变量的下界,M×1的向量
% UB 决策变量的上界,M×1的向量
% D 原始样本数据,n×p的矩阵
% c 分类个数
% m 模糊C均值聚类数学模型中的指数
%% 输出参数列表
% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体
% BESTY K×1矩阵,记录每一代的最优个体的评价函数值
% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录全部个体
% ALLY K×N矩阵,记录全部个体的评价函数值
%% 第一步:
M=length(LB);%决策变量的个数
%种群初始化,每一列是一个样本
farm=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
farm(i,:)=x;
end
%输出变量初始化
ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体
ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值
BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k=1;%迭代计数器初始化
%% 第二步:迭代过程
while k<=K
%% 以下是交叉过程
newfarm=zeros(M,2*N);
Ser=randperm(N);%两两随机配对的配对表
A=farm(:,Ser(1));
B=farm(:,Ser(2));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];%产生子代a
b=[B(1:P0,:);A((P0+1):end,:)];%产生子代b
newfarm(:,2*N-1)=a;%加入子代种群
newfarm(:,2*N)=b;???
for i=1:(N-1)
A=farm(:,Ser(i));
B=farm(:,Ser(i+1));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];
b=[B(1:P0,:);A((P0+1):end,:)];
newfarm(:,2*i-1)=a;
newfarm(:,2*i)=b;
end
FARM=[farm,newfarm];
%% 选择复制
SER=randperm(3*N);
FITNESS=zeros(1,3*N);
fitness=zeros(1,N);
for i=1:(3*N)
Beta=FARM(:,i);
FITNESS(i)=FIT(Beta,D,c,m);
end
for i=1:N
f1=FITNESS(SER(3*i-2));
f2=FITNESS(SER(3*i-1));
f3=FITNESS(SER(3*i));
if f1<=f2&&f1<=f3
farm(:,i)=FARM(:,SER(3*i-2));
fitness(:,i)=FITNESS(:,SER(3*i-2));
elseif f2<=f1&&f2<=f3
farm(:,i)=FARM(:,SER(3*i-1));
fitness(:,i)=FITNESS(:,SER(3*i-1));
else
farm(:,i)=FARM(:,SER(3*i));
fitness(:,i)=FITNESS(:,SER(3*i));
end
end
%% 记录最佳个体和收敛曲线
X=farm;
Y=fitness;
ALLX{k}=X;
ALLY(k,:)=Y;
minY=min(Y);
pos=find(Y==minY);
BESTX{k}=X(:,pos(1));
BESTY(k)=minY;???
%% 变异
for i=1:N
if Pm>rand&&pos(1)~=i
AA=farm(:,i);
BB=GaussMutation(AA,LB,UB);
farm(:,i)=BB;
end
end
disp(k);
k=k+1;
end
%% 绘图
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
ylabel('函数值')
xlabel('迭代次数')
grid on

忘记写了,这个是源代码!谢谢谢谢!

阅读全文

与matlab模糊c均值聚类算法相关的资料

热点内容
自己购买云主服务器推荐 浏览:419
个人所得税java 浏览:761
多余的服务器滑道还有什么用 浏览:189
pdf劈开合并 浏览:28
不能修改的pdf 浏览:752
同城公众源码 浏览:489
一个服务器2个端口怎么映射 浏览:297
java字符串ascii码 浏览:78
台湾云服务器怎么租服务器 浏览:475
旅游手机网站源码 浏览:332
android关联表 浏览:945
安卓导航无声音怎么维修 浏览:332
app怎么装视频 浏览:430
安卓系统下的软件怎么移到桌面 浏览:96
windows拷贝到linux 浏览:772
mdr软件解压和别人不一样 浏览:904
单片机串行通信有什么好处 浏览:340
游戏开发程序员书籍 浏览:860
pdf中图片修改 浏览:288
汇编编译后 浏览:491