导航:首页 > 源码编译 > 先进算法电机控制思路

先进算法电机控制思路

发布时间:2023-02-03 22:42:09

⑴ 步进电机基本控制方法

进电机的基本控制方法有几下几种情况:1、采用专用芯片,这样控制简单,成本就低,但一般工作电流不大约2A左右,工作电压不高,36VDC左右;2、采用MCU+功率器件的方式,电流通过模拟电路来控制,MCU提供细分环形分配器,这种方式,控制相对简单,工作电流和电压都可以做大,但控制参数一般比较固定,应用不灵活;3、采用DSP实现全数字式控制,控制比较复杂,但控制算法灵活,可以自动整定不同电机的控制参数。

⑵ 矢量控制(SVC)算法的基本思路是什么

基本原理就是:通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机励磁电流和转矩电流进行控制,从而达到控制电机转矩的目的。
简单讲:矢量控制方式,就是将磁链和转矩解耦,有利于分别设计两者的调节器,以实现对电机高性能的调整。
希望对你有点帮助!

⑶ 现代电机控制

1 控制理论方面

自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。

1985年,德国的Depenbrock教授提出一种新的控制方法,即异步电动机直接转矩控制系统。它就是上述研究的结果。它不需要坐标变换,也不需要依赖转子数学模型,理论上非常诱人。实验室条件下也已做出性能指标相当高的样机。只是还有些问题未解决,如低速时转矩观测器和转速波动等,未能产品化。现在市面上自称实现了转矩直接控制的系统,大多都是或者采用了将磁链定向与直接转矩控制相结合的方法,低速时采用磁链定向矢量变换控制,高速时采用直接转矩控制。或者同时观测转子磁链,作为直接转矩控制系统的校正。一来这种方法平稳切换的时机较难确定,目前德国大学的博士正在研究这个问题;二来如果低速时采用磁链定向矢量控制,或采用观测转子磁链的方法,还是要依赖转子参数。也就是说只要有转子磁链的成分在里面,就还是对转子参数较敏感。无法体现直接转矩控制的优势。看来,完全的转矩直接控制离产品化还有一段距离。

除此之外,基于现代控制理论的滑模变结构控制技术、采用微分几何理论的非线性解耦控制、模型参考自适应控制等等方法的引入,使系统性能得到了改善。但这些理论仍然建立在对象精确的数学模型基础上,有的需要大量的传感器、观察器,因而结构复杂,有的仍无法摆脱非线性和电机参数变化的影响,因而需进一步探讨解决上述问题的途径。

纵观电机工业的发展史,几乎每一次大的发展都是有理论方面的突破。但现在作为一些较成熟的现代交流系统,再提出具有划时代意义的理论不太容易。因此今后的发展,相当长一段时间内还会是将现有的各种控制理论加以结合,互相取长补短,或者将其它学科的理论、方法引入电机控制,走交叉学科的道路,以解决上述问题。近年来,智能控制研究很活跃,并在许多领域获得了应用。典型的如模糊控制、神经网络控制和基于专家系统的控制。由于智能控制无需对象的精确数学模型并具有较强的鲁棒性,因而许多学者将智能控制方法引入了电机控制系统的研究,并预言未来的十年将开创电力电子和运动控制的新纪元。比较成熟的是模糊控制,它具有不依赖被控对象精确的数学模型、能克服非线性因素的影响、对调节对象的参数变化具有较强的鲁棒性等等优点。模糊控制已在交直流调速系统和伺服系统中取得了满意的效果。它的典型应用如:用于电机速度控制的模糊控制器;模糊逻辑在电机模型及参数辨识中的应用;基于模糊逻辑的异步电动机效率优化控制;基于模糊逻辑的智能逆变器的研究等等。近年来已有一些文献探讨将神经网络控制或专家系统引入异步电动机的直接转矩控制系统,相信不久的将来会获得实用性结果。

2 控制器方面

有了好的控制方法,还需要有能将其实现的控制器。可靠性高,实时性好是对控制系统的基本要求。最初的电机控制都是采用分立元件的模拟电路,后来随着电子技术的进步,采用集成电路甚至专用集成电路。这些电路大多为模拟数字混合电路,既提高了可靠性、抗干扰性,又缩短了开发周期和研制费用,减小了体积,因而发展很快。

作为专用集成电路(ASIC-Application Specific Integrated Circuit)的一个重要方面,几乎所有先进工业国家的半导体厂商,都能提供自己开发的电机控制专用集成电路。所以电机控制专用集成电路品种、规格繁多,产品资料和应用资料十分丰富。但同时由于各厂商之间无统一标准,因而产品极其分散,又不断有新产品出现,为满足一次设计的需要,往往要花很大力气、很多时间去收集整理资料。但如前所述,当前电机控制的发展越来越趋于多样化、复杂化。所以有时未必能满足越来越苛刻的性能要求。这时可以考虑自己开发电机专用的控制芯片。现场可编程门阵列(FPGA)可以作为一种解决方案。作为开发设备,FPGA可以方便地实现多次修改。简单地打个比方,FPGA相对于ASIC好比EEPROM相对于掩模生产的ROM。由于FPGA的集成度非常大。一片FPGA少则几千个等效门,多则几万或几十万等效门。所以一片FPGA就可以实现非常复杂的逻辑,替代多块集成电路和分立元件组成的电路。它借助于硬件描述语言(VHDL或VerilogHDL)来对系统进行设计,硬件描述语言摈弃了传统的从门级电路向上直至整体系统的方法。它采用三个层次的硬件描述和自上至下(从系统功能描述开始)的设计风格,能对三个层次的描述进行混合仿真,从而可以方便地进行数字电路设计。具体层次及其简介如下:第一层为行为描述,主要是功能描述,并可以进行功能仿真;第二层是RTL描述,主要是逻辑表达式的描述,并进行RTL级仿真:第三层是门级描述,即用基本的门电路进行描述,相应地进行门级仿真。最后生成门级网络表,再用专用工具生成FPGA的编程码点,就可以进行FPGA的编程了。试制成功后,如要大批量生产,可以按照FPGA的设计定做ASIC芯片,降低成本。目前已有探讨这方面可行性的文章,有兴趣的读者可参阅。

集成电路的出现对电机控制的影响是深远的。它大大地推动了电机控制行业的发展,至今仍具有广大市场,只可惜国内的集成电路厂商不能占到这一市场他们应该占到的份额。随着技术的进步,特别是数字化趋势广泛流行的今天,人们不会满足于停留在模拟数字混合的时代。

现在市面上较通用的变频器大多都是采用单片机来控制。应用较多的是8096系列产品。但单片机的处理能力有限,特别是采用矢量变换控制的系统,由于需要处理的数据量大,实时性和精度要求高,单片机往往不再能满足要求。因此人们自然而然地又想到了数字信号处理器(DSP)。近年来,各种集成化的单片DSP的性能得到很大改善,软件和开发工具也越来越多,越来越好;价格却大幅度下滑,目前低端产品已接近单片机的价格水平,且具有更高的性能价格比。从而使得DSP器件及技术更容易使用,价格也能够为广大用户接受。越来越多的单片机用户开始选用DSP器件来提高产品性能,DSP器件取代高档单片机的时机已经成熟。而且随着DSP在各行各业中的广泛普及,专业人才方面的供需矛盾也会很快解决。

与单片机相比DSP器件具有较高的集成度。DSP具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO缓冲器。提供高速、同步串口和标准异步串口。有的片内集成了A/D和采样/保持电路,可提供PWM输出。更为不同的是,DSP器件为精简指令系统计算机(RISC)器件,大多数指令都能在一个指令周期内完成,并且通过并行处理技术,使一个指令周期内可完成多条指令。DSP采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据。内置高速的硬件乘法器,增强的多级流水线,使DSP器件具有高速的数据运算能力。而单片机为复杂指令系统计算机(CISC),多数指令要2~3个指令周期来完成。单片机采用诺依曼结构,程序和数据在同一空间存取,同一时刻只能单独访问指令或数据。ALU只能做加法,乘法需要由软件来实现,因此占用较多的指令周期,也就是说速度比较慢。所以,结构上的差异使DSP器件比16位单片机单指令执行时间快8~10倍,完成一次乘加运算快16~30倍。简单地说,就是DSP器件运算功能强,而单片机的事务处理能力强。DSP器件还提供了高度专业化的指令集,提高了FFT快速傅里叶变换和滤波器的运算速度。此外,DSP器件提供JTAG(JointTest Action Group)接口,具有更先进的开发手段,批量生产测试更方便。

为了在电机控制市场抢占份额,各大DSP生产厂商纷纷推出自己的内嵌式DSP电机专用控制电路。如占DSP市场份额45%的美国德州仪器公司,凭借自己的实力,推出电机控制器专用DSP-TMS320C24x(TMS320F24x片内ROM为可擦写)。新的TMS320C24xDSP采用TI的T320C2xLP16位定点DSP核心,并集成了一个电机控制事件管理器,后者的特点是可以最佳方式实现对电机转向的电子控制。该器件利用TI的可重用DSP核心技术,显示出TI的特殊能力—通过在单一芯片上集成一个DSP核及其数字和混合信号外设件,制造出面向各种应用的DSP方案。TMS320C24x作为第一个数字电机控制器的专用DSP系列,可支持电机的转向、指令的产生、控制算法的处理、数据交流和系统监控等功能。集成化DSP核、最佳化电机控制器事件管理器和单片式A/D设计等诸多因素加在一起,就可提供一个单芯片式数字电机控制方案。系列中的TMS320C240包括一个20MIPS DSP核、一个事件管理器、两个串行接口、一对10位A/D转换器、一个32位数字I/O系统、一个监视计时器、一个低电压监测器和一个16K字符快闪存储器(TMS320F240型)。依靠兼容性实现系统升级。TMS320C240的编码与TI的TMS320Clx,TMX320C2x,TMS230C2xx和TMS320C5x系列中的DSP相兼容。它利用TMS320的定点DSP软件开发工具和JTAG仿真支持,从而可使电机控制器领域内的开发商方便地从微控制器升迁至新的DSP。美国模拟设备(AD)公司也不甘落后,与着名的英特尔(intel)公司合作,生产出ADMC3xx系列电机控制专用DSP,性能与TI公司的产品相差不大。也是基于AD公司的16位定点DSP核ADSP2171来设计的,此外还集成了三相PWM产生器(16位)和A/D转换器。其它比较有名的生产DSP的厂商还有摩托罗拉公司(Motorola)和国家电器公司(NEC)。采用基于DSP的电机专用集成电路的另一个好处是,可以降低对传感器等外围器件的要求。通过复杂的算法达到同样的控制性能,降低成本,可靠性高,有利于专利技术的保密。

有时,系统要求的人机交互、打印等控制较多,一个DSP不能胜任,这时可采用一个单片机来处理事务,一个DSP来处理运算的异型多处理器系统。但这样做,既增加了两个处理器之间同步和通信的负担,又使系统实时性变坏,延长系统开发时间。这种情况下,采用Tricore是解决问题的好方法,它把微处理器、微控制器和数字信号处理器的能力集中于一块芯片上,从而能单片解决遇到的大多数工程问题。

⑷ 永磁同步电机的控制策略

1 引言
近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比,永磁同步电机,特别是稀土永磁同步电机具有损耗少、效率高、节电效果明显的优点。永磁同步电动机以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,没有励磁损耗,提高了电动机的效率和功率密度,因而它是近几年研究较多并在各个领域中应用越来越广泛的一种电动机。在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。
2 永磁同步电动机的数学模型
当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。
在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(α,β)坐标系。图1给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。
(1)定子电压方程为:
式中:r为定子绕组电阻;p为微分算子,p=d/dt;id,iq为定子电流;ud,uq为定子电压;ψd,ψq分别为磁链在d,q轴上的分量;ωf为转子角速度(ω=ωfnp);np为电动机极对数。
(2)定子磁链方程为:
式中:ψf为转子磁链。
(3)电磁转矩为:
式中:J为电机的转动惯量。
若电动机为隐极电动机,则Ld=Lq,选取id,iq及电动机机械角速度ω为状态变量,由此可得永磁同步电动机的状态方程式为:
由式(7)可见,三相永磁同步电动机是一个多变量系统,而且id,iq,ω之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。
3 永磁同步电动机的控制策略
任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。
3.1 恒压频比控制
恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。
3.2 矢量控制
高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。因此,对其进行深入研究。
矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。
3.3 直接转矩控制
矢量控制方案是一种有效的交流伺服电动机控制方案。但因其需要复杂的矢量旋转变换,而且电动机的机械常数低于电磁常数,所以不能迅速地响应矢量控制中的转矩。针对矢量控制的这一缺点,德国学者Depenbrock于上世纪80年代提出了一种具有快速转矩响应特性的控制方案,即直接转矩控制(DTC)。该控制方案摒弃了矢量控制中解耦的控制思想及电流反馈环节,采取定子磁链定向的方法,利用离散的两点式控制直接对电动机的定子磁链和转矩进行调节,具有结构简单,转矩响应快等优点。DTC最早用于感应电动机,1997年L Zhong等人对DTC算法进行改造,将其用于永磁同步电动机控制,目前已有相关的仿真和实验研究。
DTC方法实现磁链和转矩的双闭环控制。在得到电动机的磁链和转矩值后,即可对永磁同步电动机进行DTC。图2给出永磁同步电机的DTC方案结构框图。它由永磁同步电动机、逆变器、转矩估算、磁链估算及电压矢量切换开关表等环节组成,其中ud,uq,id,iq为静止(d,q)坐标系下电压、电流分量。
虽然,对DTC的研究已取得了很大的进展,但在理论和实践上还不够成熟,例如:低速性能、带负载能力等,而且它对实时性要求高,计算量大。
3.4 解耦控制
永磁同步电动机数学模型经坐标变换后,id,iq之间仍存在耦合,不能实现对id和iq的独立调节。若想使永磁同步电动机获得良好的动、静态性能,就必须解决id,iq的解耦问题。若能控制id恒为0,则可简化永磁同步电动机的状态方程式为:
此时,id与iq无耦合关系,Te=npψfiq,独立调节iq可实现转矩的线性化。实现id恒为0的解耦控制,可采用电压型解耦和电流型解耦。前者是一种完全解耦控制方案,可用于对id,iq的完全解耦,但实现较为复杂;后者是一种近似解耦控制方案,控制原理是:适当选取id环电流调节器的参数,使其具有相当的增益,并始终使控制器的参考输入指令id*=O,可得到id≈id*=0,iq≈iq*o,这样就获得了永磁同步电动机的近似解耦。图3给出基于矢量控制和id*=O解耦控制的永磁同步电动机
调速系统框图。
虽然电流型解耦控制方案不能完全解耦,但仍是一种行之有效的控制方法,只要采取较好的处理方式,也能得到高精度的转矩控制。因此,工程上使用电流型解耦控制方案的较多。然而,电流型解耦控制只能实现电动机电流和转速的静态解耦,若实现动态耦合会影响电动机的控制精度。另外,电流型解耦控制通过使耦合项中的一项保持不变,会引入一个滞后的功率因数。
4 结语
上述永磁同步电动机的各种控制策略各有优缺点,实际应用中应当根据性能要求采用与之相适应的控制策略,以获得最佳性能。永磁同步电动机以其卓越的性能,在控制策略方面已取得了许多成果,相信永磁同步电动机必然广泛地应用于国民经济的各个领域。

⑸ 控制算法与电机控制的关系

照你这么说算法和控制应该是一样的吧,都是指:运行在计算处理器中的软件程序。这些程序一般由定时器定时触发,每跑一次程序就生成一个新的指令,由处理器输送给电机驱动。比较普遍的处理器周期都是1-10kHz (0.1-1豪秒),并且和电机驱动中的功率电力电子器件的开关频率吻合。
电机驱动是功率器件,把处理器的控制信号(信号级别,通常是占空比或者PWM信号)输入到电力电子器件的门极上。电力电子器件在控制信号的作用下,可以对大电流、高电压的功率级别进行动作。功率电信号用功率电线送到电机里。
算法模型和所有公式都是在单片机、PLC里面运行的。时域算法(PI、PID之类的)可以进行离散化(Z变换)得到离散的控制关系,然后编相应的程序。这个离散化的采样频率就是程序的处理周期(0.1-1毫秒)。总之这些软硬件的东西都是关联的。
至于时域算法如何得到,那需要知道电机的模型和你要控制的是什么。电机驱动一般是电压型输出。所以你最终结果是得到一个电机控制电压。电压信号输出到电机驱动,一般需要一个PWM控制,例如正弦调制SPWM,或者矢量控制SVPWM。在电压基础上,如果想控制电流,那么一个PI就可以(电流控制器),输入是电流反馈,输出是电压。如果想控制转矩,转矩和电流是对应的。所以另外一个模块要加在电流控制器之前,这个模块输入是转矩,输出电流,模块本身不是反馈控制,是比例放大。如果想控制速度,那需要在转矩模块之前再加一个速度模块,输入是速度,输出是转矩,这个模块可以是PI。这些具体的东西不是一两天可以弄懂的,我只是给你大概说一下。
至于硬件电路,一般是我上面说的电机驱动以及它内部的电压、电流、温度检测、电力电子器件、保护措施。
电机上一般也有一个位置传感器,用于反馈控制信号给单片机,这个位置信号在交流电机里是用来做dq变换的,或者叫park变换。这个是交流转化为直流控制的重要步骤。

⑹ 寻找一个电机控制又快又准的算法,需要快速响应.

首先你的电机是不是能达到10ms内速度从0r/min迅速提高到5000r/min,用两台光电编码器定义电机输出又快又准
再看看别人怎么说的。

⑺ 如何提高电机的效率

这些问题可以通过智能控制来克服,智能控制可以从两个方面大大提高电机的效率。首先,智能控制采用了先进的算法来提高电机的运行性能。最常见的方法是对AC感应电机的运行进行矢量控制,可以让电机采用合理的尺寸,以实现最优的效率。此外,速度可调也使系统能以更高的效率运行。例如,一个矢量控制的可调速驱动可避免使用传动,从而减少系统机械部件带来的能量损耗。 其次,由于系统采用智能控制,就有可能将现有的电机更换为效率更高的电机。在电器中逐步采用永磁电机就是这一发展趋势的体现。 永磁同步电机从本质上来说比AC感应电机的效率更高,因为它们没有后者与感应转子电流相关的传导损耗,它们还具有更优良的机械特性,如力矩纹波更低、运行更加安静,而且在产生同样的机械功率输出时,它们的体积更小。开关磁阻电机在一个固定或者中度变速的应用中也可以表现出极高的效率,而这些应用需要DSP控制器才具备精确、复杂控制能力。 所有这些解决方案都有一个共同点:它们利用了密集的数值计算来提高系统的性能。矢量控制算法需要先对转子磁通量的方位进行测量或者预测,然后对一个多相绕组产生的定子通量位置进行优化,在给定的通量结构下产生最大的力矩。对于一台永磁电机而言,定子通量需要隔开90度(电角度),这是产生力矩的最佳方式。

⑻ 步进电机有哪些控制策略

步进电机的控制策略:
1、PID控制
PID控制作为一种简单而实用的控制方法,在步进电机驱动中获得了广泛的应用。它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),将偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。文献将集成位置传感器用于二相混合式步进电机中,以位置检测器和矢量控制为基础,设计出了一个可自动调节的PI速度控制器,此控制器在变工况的条件下能提供令人满意的瞬态特性。文献根据步进电机的数学模型,设计了步进电机的PID控制系统,采用PID控制算法得到控制量,从而控制电机向指定位置运动。最后,通过仿真验证了该控制具有较好的动态响应特性。采用PID控制器具有结构简单、鲁棒性强、可靠性高等优点,但是它无法有效应对系统中的不确定信息。
目前,PID控制更多的是与其他控制策略相结合,形成带有智能的新型复合控制。这种智能复合型控制具有自学习、自适应、自组织的能力,能够自动辨识被控过程参数,自动整定控制参数,适应被控过程参数的变化,同时又具有常规PID控制器的特点。
2、自适应控制
自适应控制是在20世纪50年代发展起来的自动控制领域的一个分支。它是随着控制对象的复杂化,当动态特性不可知或发生不可预测的变化时,为得到高性能的控制器而产生的。其主要优点是容易实现和自适应速度快,能有效地克服电机模型参数的缓慢变化所引起的影响,是输出信号跟踪参考信号。文献研究者根据步进电机的线性或近似线性模型推导出了全局稳定的自适应控制算法,这些控制算法都严重依赖于电机模型参数。文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精确的位置控制和较高较平稳的转速。
目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的最大化补偿及伺服系统低速高精度的跟踪控制性能。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。
3、矢量控制
矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制,从而获得良好的解耦特性,因此,矢量控制既需要控制定子电流的幅值,又需要控制电流的相位。由于步进电机不仅存在主电磁转矩,还有由于双凸结构产生的磁阻转矩,且内部磁场结构复杂,非线性较一般电机严重得多,所以它的矢量控制也较为复杂。文献[8]推导出了二相混合式步进电机d-q轴数学模型,以转子永磁磁链为定向坐标系,令直轴电流id=0,电动机电磁转矩与iq成正比,用PC机实现了矢量控制系统。系统中使用传感器检测电机的绕组电流和转自位置,用PWM方式控制电机绕组电流。文献推导出基于磁网络的二相混合式步进电机模型,给出了其矢量控制位置伺服系统的结构,采用神经网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿,通过最大转矩/电流矢量控制实现电机的高效控制。
4、智能控制的应用
智能控制不依赖或不完全依赖控制对象的数学模型,只按实际效果进行控制,在控制中有能力考虑系统的不确定性和精确性,突破了传统控制必须基于数学模型的框架。目前,智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制、神经网络和智能控制的集成。
4.1模糊控制
模糊控制就是在被控制对象的模糊模型的基础上,运用模糊控制器的近似推理等手段,实现系统控制的方法。作为一种直接模拟人类思维结果的控制方式,模糊控制已广泛应用于工业控制领域。与常规控制相比,模糊控制无须精确的数学模型,具有较强的鲁棒性、自适应性,因此适用于非线性、时变、时滞系统的控制。文献[16]给出了模糊控制在二相混合式步进电机速度控制中应用实例。系统为超前角控制,设计无需数学模型,速度响应时间短。
4.2神经网络控制
神经网络是利用大量的神经元按一定的拓扑结构和学习调整的方法。它可以充分逼近任意复杂的非线性系统,能够学习和自适应未知或不确定的系统,具有很强的鲁棒性和容错性,因而在步进电机系统中得到了广泛的应用。文献将神经网络用于实现步进电机最佳细分电流,在学习中使用Bayes正则化算法,使用权值调整技术避免多层前向神经网络陷入局部极小点,有效解决了等步距角细分问题。

⑼ 电机的控制算法

选用直流或则同步伺服电机,启动惯性小,启动转矩大,可以快速加速,然后设置好电流环参数,减小电流环惯性系数,应当可以达到要求。如果在平衡点想力求快速平稳控制可以考虑其他高级控制算法,如最优控制,模糊PID控制等
给电流环阶跃信号,如果他能快速上升且产生微弱超调或者不超调,这样的PI参数就可以,个人认为i参数不必设的挺大,甚至去掉就可以;可以加D参数,它能提高速度环的反应速度。电流环加PI两个参数就可

⑽ 步进电机如何控制 如何实现前进一步一个脉冲前进一步还是需要驱动

只要按照步进电机的资料提供环形分配信号给功率放大电路,使得电机绕组按一定规律循环通断电。控制电路每接收一个脉冲,就步进电机就可以每改变一次通断电状态运行一步。不过电机转起来比较容易,但要转好,还需要复杂的控制算法。英纳仕的EZM系列步进驱动系统就通过复杂的精密电流控制和振动抑制技术,使得步进电机固有的中低速振动得到极大改善。

阅读全文

与先进算法电机控制思路相关的资料

热点内容
学金融工资高还是学程序员 浏览:527
有一个外国电影大家躲在超市里 浏览:134
60分钟在线观看 浏览:680
营销系统源码有哪些 浏览:543
图片导航网站源码 浏览:737
linux开启终端 浏览:663
日本爱 浏览:818
云服务器如何运行项目 浏览:487
韩剧一个女主叫美娜善喜 浏览:565
降低php版本 浏览:58
成年二次元下载 浏览:50
设计加密文件 浏览:181
韩国电影观看网站大全 浏览:479
云服务器云计算 浏览:226
欧式古典牛奶电影 浏览:350
女主不断变美的系统文 浏览:390
python字符串比较函数 浏览:371
qq无损音乐加密版 浏览:78
mfc编程框架 浏览:167
玄幻小说txt下载完结 浏览:167