导航:首页 > 源码编译 > 遗传算法入门经典书籍

遗传算法入门经典书籍

发布时间:2025-05-15 08:48:56

1. 人工智能入门书籍推荐

1.《深度学习》
深度学习领御奠基性的经典畅销书,长期位居亚马逊AI和机器学习类图书榜首。
2.《人工智能》
智能革命时代先行者李开复解读AI如何重塑个人、商业与社会的未来图谱。
3.《人工智能简史》
全方位解读人工智能的起源、神经网络、遗传算法、深度学习、自然语言处理等知识,深度点评AI历史趋势。
4.《人工智能的未来》
揭秘人类思维的奥秘,奇点大学校长、谷歌工程总监、《奇点临近》作者雷·库兹韦尔全面解析“人工智能”创建原理的颠覆力作。
5.《人工智能:国家人工智能战略行动抓手》
比尔·盖茨、埃隆·马斯克、扎克伯格、李彦宏、马化腾、李开复、雷军、刘庆峰等跨界大咖都在关注的科技新革命,腾讯携手工信部打造国家人工智能战略行动抓手。
6.《极简人工智能:你一定爱读的AI通识书》
全方位呈现“AI”全景蓝图:群体智能、神经网络、智能代理、情感机器、智能计算、智能机器人等。
7.《区块链 人工智能 数字货币:黑科技让生活更美好》
《纽约时报》畅销书,跟进未来趋势,用技术重构世界,解密正在全面爆发的区块链、人工智能和数字货币等黑科技。
8.《高级人工智能(第三版)》
9.《终极算法:机器学习和人工智能如何重塑世界》
比尔·盖茨年度推荐书籍,沃尔特·艾萨克森、车品觉、曹欢欢联袂推荐!
10.《人工智能新时代:全球人工智能应用真实落地50例》

2. 进化算法入门读书笔记(一)

这里我参考学习的书籍是:

《进化计算的理论和方法》,王宇平,科学出版社

《进化优化算法:基于仿生和种群的计算机智能方法》,[美]丹·西蒙,清华大学出版社。

进化算法是 求解优化问题 的一种算法,它是 模仿生物进化与遗传原理 而设计的一类随机搜索的优化算法。

不同的作者称进化算法有不同的术语,以下。注:这里仅列举出了我自己比较容易混淆的一些,并未全部列出。

进化计算: 这样能强调算法需要在 计算机上 实施,但进化计算也可能指不用于优化的算法(最初的遗传算法并不是用于优化本身,而是想用来研究自然选择的过程)。因此,进化优化算法比进化计算更具体。

基于种群的优化: 它强调进化算法一般是让问题的候选解 种群 随着时间的进化以得到问题的更好的解。然而许多进化算法每次迭代只有单个候选解。因此,进化算法比基于种群的优化更一般化。

计算机智能/计算智能: 这样做常常是为了区分进化算法与专家系统,在传统上专家系统一直被称为人工智能。专家系统模仿演绎推理,进化算法则模仿归纳推理。进化算法有时候也被看成是人工智能的一种。计算机智能是比进化算法更一般的词,它包括神经计算、模糊系统、人工生命这样的一些技术,这些技术可应用于优化之外的问题。因此,进化计算可能比计算机智能更一般化或更具体。

由自然启发的计算/仿生计算: 像差分进化和分布估计算法这些进化算法可能并非源于自然,像进化策略和反向学习这些进化算法与自然过程联系甚微。因此,进化算法比由自然启发的算法更一般化,因为进化算法包括非仿生算法。

机器学习: 机器学习研究由经验学到的计算机算法,它还包括很多不是进化计算的算法,如强化学习、神经网络、分簇、SVM等等。因此,机器学习比进化算法更广。

群智能算法: 一些人认为群智能算法应与进化算法区分开,一些人认为群智能算法是进化算法的一个子集。因为群智能算法与进化算法有相同的执行方式,即,每次迭代都改进问题的候选解的性能从而让解的种群进化。因此,我们认为群智能算法是一种进化算法。

进化算法的简单定义可能并不完美。在进化算法领域术语的不统一会让人困惑,一个算法是进化算法如果它通常被认为是进化算法,这个戏谑的、循环的定义一开始有些麻烦,但是一段时间后,这个领域工作的人就会习惯了。

优化几乎适用于生活中的所有领域。除了对如计算器做加法运算这种过于简单的问题,不必用进化算法的软件,因为有更简单有效的算法。此外对于每个复杂的问题,至少应该考虑采用进化算法。

一个优化问题可以写成最小化问题或最大化问题,这两个问题在形式上很容易互相转化:

函数 被称为目标函数,向量 被称为独立变量,或决策变量。我们称 中元素的个数为问题的维数。

优化问题常常带有约束。即在最小化某个函数 时,对 可取的值加上约束。不举例。

实际的优化问题不仅带有约束,还有多个目标。这意味着我们想要同时最小化不止一个量。

例子:

这里评估这个问题的一种方式是绘制 作为函数 的函数的图:

如图,对在实线上的 的值,找不到能同时使 和 减小的 的其他值,此实线被称为 帕累托前沿 ,而相应的 的值的集合被称为帕累托集。(此处的帕累托最优问题十分重要,可以参考这个链接来学习和理解: 多目标优化之帕累托最优 - 知乎 ,非常清晰易懂。)

该例子是一个非常简单的多目标优化问题,它只有两个目标。实际的优化问题通常涉及两个以上的模目标,因此很难得到它的帕累托前沿,由于它是高维的,我们也无法将它可视化。后面的章节将会仔细讨论多目标进化优化。

多峰优化问题是指问题不止一个局部最小值。上例中的 就有两个局部最小值,处理起来很容易,有些问题有很多局部最小值,找出其中的全局最小值就颇具挑战性。

对于前面的简单例子,我们能用图形的方法或微积分的方法求解,但是许多实际问题除了有更多独立变量、多目标,以及带约束之外更像上面的Ackley函数这样,对于这类问题,基于微积分或图形的方法就不够用了,而进化算法却能给出更好的结果。

到现在为止我们考虑的都是连续优化问题,也就是说,允许独立变量连续地变化。但有许多优化问题中的独立变量智能在一个离散集合上取值。这类问题被称为组合优化问题。如旅行商问题。

对于有 个城市的旅行商问题,有 个可能的解。对于一些过大的问题,硬算的方法不可行,像旅行商这样的组合问题没有连续的独立变量,因此不能利用导数求解。除非对每个可能的解都试一遍,不然就无法确定所得到的组合问题的解是否就是最好的解。进化算法对这类大规模、多维的问题,它至少能帮我们找出一个好的解(不一定是最好的)。

3. 启发式算法的相关书籍 我是想系统的学习一下。最好能解释一些难易程度不同的书。

我向你推荐两本,一是:《现代优化计算方法》;二是:《智能优化算法及其应用》。这两本书都不错,其中前者算是入门的书籍,讲解清晰易懂。禁忌搜索、模拟退火、遗传算法、人工神经网络等启发式算法都有讲到。

阅读全文

与遗传算法入门经典书籍相关的资料

热点内容
2b2t服务器怎么获得权限 浏览:815
c语言javaphp 浏览:804
程序员技术不分高低吗 浏览:619
dos不是内部或外部命令 浏览:708
PC机与单片机通讯 浏览:675
二级加密图 浏览:113
压缩机异音影响制冷吗 浏览:711
德斯兰压缩机 浏览:490
程序员太极拳视频 浏览:531
网上购买加密锁 浏览:825
安卓为什么软件要隐私 浏览:83
虚拟主机管理源码 浏览:811
java图形图像 浏览:230
单片机输出口电平 浏览:486
java配置数据库连接 浏览:479
java多态的体现 浏览:554
java的split分隔符 浏览:128
跪着敲代码的程序员 浏览:239
web和php有什么区别 浏览:120
加密的电梯卡怎么复制苹果手机 浏览:219