Ⅰ 高阶偏导数的计算方法是什么
第一个:无穷等比数列所有项之和,q=2x。
第二个,定积分公式,定积分等于原函数积分上下限值之差。
这个应该可以用数学归纳法证明:
a)v/dx = u'v + uv'得证
b)假设(uv)^(k) = sum(C(n,k)u^(k)v^(n-k))
则uv的第k+1次导数
(uv)^(k+1) = d((uv)^(k))/dx = dsum(C(n,k)u^(k)v^(n-k))/dx
=sum(C(n,k) ^(k)v^(n-k)/dx)
=sum(C(n,k)u^(k+1)v^(n-k) + C(n,k) u^k v^(n-k+1))
对上市重新整理,考虑上式中的u^(k)v^(n-k+1)项,它的系数应该是C(n,k)+C(n,k-1)
根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k),带人就是你要的公式
导数公式规律
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。
可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。
Ⅱ e的x减一次方的导数
e的x减一次方的导数是e^(x-1)。
具体解法如下:
e的x减一次方,即为e^(x-1)
e的x减一次方的导数,即为e^(x-1)的导数
e^(x-1)'=e^(x-1)*(1)=e^(x-1)
所以e的x减一次方的导数是e^(x-1)。
(2)高阶导数简便算法扩展阅读
导数的求解注意点:
1、理解并牢记导数定义。导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导。
2、导数定义相关计算。这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。
3、导数、可微与连续的关系。函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的。
4、导数的计算。导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同。
5、高阶导数计算。需要同学们记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。