导航:首页 > 源码编译 > 口算法有哪些

口算法有哪些

发布时间:2022-04-21 13:10:47

❶ 口算算法

11的乘法是两边拉中间加,把要乘的数拉开,比如

13

拉成1 3,中间是两边的数相加相加1+3=4,然后两边括上和1和3就=143,如果中间的数满十还需要进一。12:比如12×14,看成10×14+2

×14就可以了。

❷ 如何提高口算速度,求一些口算的高等技巧,加减和乘除都要,打算举行一个大学生口算比赛

一、20以内加减法的口算

1、加法
20以内进位加法思维训练的方法很多:有点数法、接数法、凑十法,口决法,推导法、减补法等。要根据学生所处的文化环境、家庭背景和自身思维的不同,由学生自己动手实践、自主探索与合作交流来实现。这里重点介绍:减补法。
我们规定:两个可以凑成10的数是互为补数,1和9,2和8,3和7等。都是互为补数。
方法是:用第一个加数减去第二个加数的补数,再加上10 。比如:
9+4=13
思考方法:第二个加数的补数是6;第一个加数9减去4的补数6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13
这样的思考途径,对于培养学生的逆向思维能力很有好处,但只能符合思维能力强的学生。教师可以根据情况引导。
2、减法
20以内退位减法是以20以内加法为基础的,方法有:想加法计算减法、破十法、分解减法后连减法、记小数数到大数、推导法、加补法等。这里重点介绍加补法:
方法是:用被减数个位上的数加上减数的补数,同时去掉十位上的“1”,比如:被减数
13 - 4 = 9
思维方法:被减数个位上的3不够减;减数4的补数是6;6加上被减数个位上的3,得9,同时去掉十位上的“1”。
二、两位数加减法口算:
两位数加减法这里重点介绍减补法和加补法,首先我们规定:两个和为100的数互为百补数。
1、加法
两位数加法有四种现象,即个位、十位都不进位的;个位进位十位不进位的;十位进位个位不进位的;个位十位都进位的。下面分别介绍:
(1)、个位十位都不进位的两位数加法,用数的组成法直接相加。
例:34 + 52 = 30 + 50 + 4 + 2 = 86
(2)个位进位十位不进位的两位数加法,思维方法是:
一个加数十位上的数字加上另一个加数十位上的数字再加“1”,得十位上的数字,个位用一个加数个位上的数字减去另一个加数个位上数字的百补数,得个位上的数字。
例:36+ 47 = 83
口算过程:十位上的数字是3 + 4 + 1=8
个位上的数字是6 - 3(3是7的十补数)=3
或 7 - 4(4是6的十补数)=3
所以:36+47十位数字是8,个位数字是3,等于83。
(3)十位进位个位不进位的两位数加法,思维方法是:
首先确定“百”位数字是“1”,然后用一个加数十位上的数字减去另一个加数十位上数字的十补数,得十位上的数字,个位上的数用数的组成法直接相加。
例:83 + 64 = 147
口算过程:百位是“1”.
十位数字是 8 - 4 = 4 或 6 - 2 = 4.
个位是 3 +4 = 7.
所以:83 + 64百位数字是1,十位数字是4,个位数字是7,等于147
(4)个位十位都进位的两位数加法,思维方法是:
首先确定百位数字是“1”,然后用一个加数减去另一个加数的百补数,得十位和个位上的数字。
例:86 + 59= 145
口算过程:百位是“1”.
十位和个位上的数字用 86 - 41(59的百补数)=45
或 59 - 14(86的百补数) =45.
所以:86+59百位是1,十位和个位是45,等于145.
2、退位减法
两位数减法我们重点探讨退位减法。
(1)两位数减两位数, 思维方法是:
首先用被减数十位数字减去减数十位数字再减“1”,是差的十位数字,然后用被减数个位数字加上减数个位数字的十补数,是差的个位数字。
例:83 - 26 = 57
口算过程:十位数字是 8 - 2 -1= 5
个位数字是 3+4(4是6的十补数)=7
所以 83-26十位数字是5,个位数字是7,等于57.
(2)被减数是一百几十的退位减法,思维方法是:
首先确定百位是1-1=0 即这个数的差是几十几,然后用被减数十位和个位的数字加上减数十位和个位数字的百补数,就是差。
例132 - 67 = 65
口算过程:32+33(33是67的百补数)=65.
三、两位数乘法口算
一位数乘法口算就是口诀表,在讲清算理的基础上要求背会。这里重点介绍几种两位数乘法的特殊算法。
1、两个相同因数积的口算法;(平方口算法)
(1)、基本数与差数之和口算法:
基本数:这个数各位分别平方后,组成一个新的数称基本数。十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位。
差数:这个数十位和个位的积再乘20称差数。
基本数 + 差数 = 这两个相同因数的积。
例1、13×13
基本数:百位:1×1=1
十位:用0占位
个位:3×3=9
所以基本数就是 109
差数:1×3×20=60
基本数 + 差数 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本数:百位以上数字是 6×6=36
十位和个位数字是7×7=49
所以基本数是 3649
差数:6×7×20=840
基本数+差数=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思维过程:
第一步:把这个数个位平方。得出的数,个位作为积的个位,十位保留。
第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留。
第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数。
例1、24×24
第一步:4×4=16 “1”保留,“6”就是积的个位数。
第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数。
第三步 :2×2+1=5 “ 5”就是积的百位数.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是积的个位数。
第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数。
第三步 :3×3+4=13 "13"就是积的百位和千位数字。
所以:37×37=1369
(3)、接近50两个相同因数积的口算
思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位)。
例1、53×53
5×5+3=28 再添上3×3=9 (必须两位09) 等于2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等于3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09)
等于2209
所以:47×47=2209
(4)、末位是5的两个相同因数积的口算
思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
两个相同因数积的口算方法很多,这里就不一一介绍了。我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积。举例如下:
例1、13×14
因为:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因为:14×14=196 再减14 还得182
例2、35×37
因为:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有规律的数的口算
(1)首同尾合十(首同尾补)
思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位。
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位。
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一个数两位数字相同,一个数两位数字互补)
思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积。如积是一位数,十位用零占位。
例:33×64=(3×6+3)×100+3×4=2112
以上三种方法,可以用一个公式计算即:
(头×头+同)×100 + 尾×尾
3、利用特殊数字相乘口算
有些数字很特殊,它们的积是有规律的。
(1)7乘3的倍数或3乘7的倍数
先看看下面的几个式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126......7×27=189
我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.
因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.
果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍数或3乘17的倍数
17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用)
如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍数或13乘17的倍数
17乘13的倍数等于该倍数加该倍数的20倍,再加200倍。
如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍数或7乘43的倍数
43乘7的倍数等于该倍数加该倍数的300倍。
如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、两个接近100的数相乘的口算
(1)超过100的两个数相乘
思维方法:先把一个因数加上另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的两个数相乘
思维方法:先从一个因数中减去另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一个超过100,一个不足100的两个数相乘
思维方法:超过100的数减不足100的差,扩大100倍后,减去两个因数分别与100之差的积。
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了。以上仅介绍了部分特殊口算技巧,还有利用运算定律和运算性质可以口算;利用凑整法可以口算等等。要求我们教师要熟记和掌握这些方法,关键只有一种:最终近快的准确的口算出结果。

基本口算要熟练。20以内进位加减法和退位减法及表内乘除法必须达到“脱口而出”的熟练程度。因为任何一道四则计算题,都是一系列口算的综合,如果其中有一步口算失误,就会前功尽弃。口算的准确和熟练程度直接制约着计算能力的培养和提高。
常用数据要熟记。计算中的常用数据如果能在理解的基础上熟记,可以大大提高计算的准确性和速度。如4×25=100、4×75=300、8×125=1000、1÷2=0.5、1÷4=0.25、3÷4=0.75、1÷8=0.125(12.5%)等。
简便口算要自觉。利用数字特征和运算关系,应用运算定律或性质自觉地进行简便计算,有利于培养学生思维的灵活性和敏捷性。如389+298、654-496可以利用和、差的规律进行简算。389+298=389+300-2=689-2=687,654-496=654-500+4=154+4=158,多加几就减去几;多减几就加上几。312×25、2700÷125可以利用积、商变化的规律进行简算。312×25=(312÷4)×(25×4)=78×100=7800,2700÷125=(2700×8)÷(125×8)=21600÷1000=21.6
练习口算要经常。口算的练习应贯穿于教学活动的全过程,要围绕教学内容,有针对性。有目的性低进行。新授前练口算,“温故知新”起到迁移的作用。新授中练口算,有利用新知的巩固。新授后练口算,有利于形成良好的认知结构,能使学生自觉地应用运算定律或运算性质,改变原有的运算顺序,使计算简便。
口算技能要培养。在理解算理的基础上掌握口算方法,是学习口算的第一步,也是重要的一步,但到了一定程度,就要简化、压缩思维过程,形成口算的技能、技巧。如有些同级算的式题,36÷7×14, 72×18÷24从表面来看无法口算,根据运算定律或预算性质,进行合理的调整以后,就可以进行口算。36÷7×14=36×(14÷7)=36×2=72,72×18÷24=72÷24×18=3×18=54.或者改变一下运算的形式:36÷7×14=36×1÷7×14,72×18÷24=72×18×1÷24,在运算时,还可以把一些数拆成两数的和、两数的差、两数的积或商,使计算简便。

❸ 两位数乘两位数的速算法有哪些

如:

由图1可以看到

个位为乘数1的个位乘以乘数2的个位所得到的个位,即7x8 = 56,取个位为6,向十位进5

十位为乘数1的十位乘以乘数2的个位加乘数2的十位乘以乘数1的个位,即1x8 + 2x7 = 22,取2向百位进2

百位为乘数1的十位乘以乘数2的十位,即 1x2 = 2

最终个位、十位、百位为当前值加上对应的进位,所以个位为6,十位为2+5= 7,百位为2+2 = 4

(3)口算法有哪些扩展阅读

首同尾和10的两位数相乘

我们分析87和83这两个数,一个两位数的第一位数叫首数,也叫头,末尾那个数叫尾数,也叫尾。87和83的首数相同,我们简称首同,尾数之和7+3=10,我们称做尾和10。

首同尾和10的两位数相乘,可按下面的速算方法计算,一首数加1后,头×头与尾×尾连写就是所求的乘积。

例如:87×83=7221

运算程序,一首数8加1变成9,头×头是9×8得72,尾×尾是7×3=21,72与21写在一起,即7221。

但是,在运算过程中,如果出现尾×尾小于10,那么就在其前面添一个“0”。

❹ 口算有什么快速方法呢

口算没有所谓的投机取巧的办法,最重要的还是得多练习。

1、每天没事的时候,多做做一些简单的计算题,给自己设置一个时间限制,在规定的时间内,计算出来这道题目,假以时日,肯定有所提升,远大小状元在线做一些口算的题目,可以设置时间,可以在闲暇之余做。

2、其次还是训练记忆力,记忆力的训练说简单,很简单,说难的时候,又很难!

简单在于方法,每天花点时间,把做错的题目收集起来,勤于反思,难又在于需要非常勤劳,每天定时定点地去做这件事,所以很难坚持。远大小状元有专门的错题本可以帮助孩子收集曾经做错的题目,帮助孩子解决问题,训练孩子的记忆力。

(4)口算法有哪些扩展阅读:

培养学生的口算能力,念好“基(抓基本)、教(教方法)、练(常训练)”三字经是至关重要的。

1、直观表象助口算

从运算形式看,小学低年级的口算是从直观感知过渡到表象的运算。这样表象建立了,口算的准确性也就有基础了。

2、理清算理助口算

基本口算的教学,不在于单一的追求口算速度,而在于使学生理清算理,只有弄清了算理,才能有效地掌握口算的基本方法。因此,应重视抓好算理教学。

3、说理训练助口算

抓好说理训练,能使孩子有效地掌握基本口算,培养孩子思维的灵活性。

❺ 加减法心口算的口诀

一、20以内加减法的口算 1、加法 20以内进位加法思维训练的方法很多:点数法、接数法、凑十法,口决法,推导法、减补法等。 其中减补法: 两个可以凑成10的数是互为补数,1和9,2和8,3和7等。都是互为补数。 方法是:用第一个加数减去第二个加数的补数,再加上10 。比如:9+4=13 思考方法:第二个加数的补数是6;第一个加数9减去4的补数6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13 2、减法 20以内退位减法是以20以内加法为基础的,方法有:想加法计算减法、破十法、分解减法后连减法、记小数数到大数、推导法、加补法等。 重点介绍加补法: 方法是:用被减数个位上的数加上减数的补数,同时去掉十位上的“1”,比如:13 - 4 = 9 思维方法:被减数个位上的3不够减;减数4的补数是6;6加上被减数个位上的3,得9,同时去掉十位上的“1”。 二、两位数加减法口算: 两位数加减法这里重点介绍减补法和加补法,首先我们规定:两个和为100的数互为百补数。 1、加法 两位数加法有四种现象,即个位、十位都不进位的;个位进位十位不进位的;十位进位个位不进位的;个位十位都进位的。 (1)个位十位都不进位的两位数加法,用数的组成法直接相加。例:34 + 52 = 30 + 50 + 4 + 2 = 86 (2)个位进位十位不进位的两位数加法, 思维方法是: 一个加数十位上的数字加上另一个加数十位上的数字再加“1”,得十位上的数字,个位用一个加数个位上的数字减去另一个加数个位上数字的百补数,得个位上的数字。 例:36+ 47 = 83 口算过程:十位上的数字是3 + 4 + 1=8 个位上的数字是6 - 3(3是7的十补数)=3 或 7 - 4(4是6的十补数)=3 所以:36+47十位数字是8,个位数字是3,等于83。 (3)十位进位个位不进位的两位数加法,思维方法是:首先确定“百”位数字是“1”,然后用一个加数十位上的数字减去另一个加数十位上数字的十补数,得十位上的数字,个位上的数用数的组成法直接相加。 例:83 + 64 = 147 口算过程:百位是“1”. 十位数字是 8 - 4 = 4 或 6 - 2 = 4. 个位是 3 +4 = 7. 所以:83 + 64百位数字是1,十位数字是4,个位数字是7,等于147 (4)个位十位都进位的两位数加法,思维方法是:首先确定百位数字是“1”,然后用一个加数减去另一个加数的百补数,得十位和个位上的数字。 例:86 + 59= 145 口算过程:百位是“1”. 十位和个位上的数字用 86 - 41(59的百补数)=45 或 59 - 14(86的百补数) =45. 所以:86+59百位是1,十位和个位是45,等于145.2 退位减法 两位数减法我们重点探讨退位减法。 (1)两位数减两位数, 思维方法是:首先用被减数十位数字减去减数十位数字再减“1”,是差的十位数字,然后用被减数个位数字加上减数个位数字的十补数,是差的个位数字。 例:83 - 26 = 57 口算过程:十位数字是 8 - 2 -1 = 5 个位数字是 3+4(4是6的十补数)=7 所以 83-26十位数字是5,个位数字是7,等于57. (2)被减数是一百几十的退位减法,思维方法是:首先确定百位是1-1=0 即这个数的差是几十几,然后用被减数十位和个位的数字加上减数十位和个位数字的百补数,就是差。例132 - 67 = 65 口算过程:32+33(33是67的百补数)=65.

❻ 三年级上册约等于≈口算有哪些

等于≈口算:约等于就是大约多少的意思,是一个估计的数字,按四舍五入算法进行计算。通常会告知精确到的位数,如精确到十位,491就约等于490,按四舍五入算法。

四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这也是我们使用这种方法为基本保留法的原因。

详细释义:

口算--快心算是唯一不借助任何实物进行简便运算的方法,既不用算盘,也不用手指, 口算--快心算-----真正与小学数学教材同步的教学模式。

口算--快心算教材的编排和难度是紧扣小学数学大纲并与初中代数接轨,比小学课本更简便的一门速算。简化了笔算,加强了口算。简单,易学,趣味性强,小学生通过短时间培训后,多位数加,减,乘,除,不列竖式,直接可以写出答数。

口算--快心算的奇特效果。

❼ 口算速算的方法

1.速算之凑整先算。
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502

【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之带符号搬家。
【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455

【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?

3.速算之拆数凑整。
【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989

【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值变化。
【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。
例:1234-798

【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括号法。
【点拨】:在加减混合运算中,括号前面是“加号或乘号”,则去括号时,括号里的运算符号不变;如果括号前面是“减号或除号”,则去括号时,括号里的运算符号都要改变。

例题:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根据“去括号原则”把括号去掉,然后根据“在同级运算中每个数可带着它前边的符号‘搬家’”进行简算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18

6.速算之同尾先减。
【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256

7.速算之提取公因数
【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。

❽ 14×12都有哪些口算的方法

直接按照乘法口诀的方法依次计算,然后结合乘法的运算法则即可算出最后的运算结果。结果为168

❾ 把18分解素因数用口算法怎么做

把18分解因数,用乘法口诀求质因数有几个,1×18
2×9
3×6
所以18的质因数有1 18 2 9 3 6

❿ 1.4除以59有几种简便口算法

1.4/59约等于0.024
以上计算结果保留了三位小数,进行了竖式计算得出

阅读全文

与口算法有哪些相关的资料

热点内容
苹果库乐队怎么连接服务器 浏览:552
程序员埋bug的心理 浏览:257
好多个g的文件夹怎么转发 浏览:321
javadesaes加密 浏览:126
基于单片机的wifi设计 浏览:885
国什么app 浏览:366
rtk文件夹没了怎么办 浏览:187
饥荒安卓闪退怎么办 浏览:635
python二次开发cad 浏览:304
程序员直播机器人舞团 浏览:769
devc指针编译问题 浏览:1002
支持dsd硬解压声卡 浏览:771
怎么查看u盘加密区 浏览:184
台电加密是什么格式 浏览:158
php论坛版块在哪个文件夹 浏览:442
暗黑的服务器为什么维护 浏览:624
android内存溢出的原因 浏览:18
标志307的压缩比是多少 浏览:637
服务器启动为什么叫三声 浏览:997
追风筝的人英文pdf 浏览:940