① 有关图划分算法
首先,最多划分为两部分,因为如果大于等于3部分,那么将其中任意两个部分合并可以优化答案。
这样问题就是求无向图的边连通度的问题了,可以用网络流来解决。具体算法可以参考《图论算法与信息学竞赛》这本书。
② 谱聚类算法的划分准则
谱聚类算法将聚类问题转化为图的划分问题之后,基于图论的划分准则的优劣直接影响到聚类结果的好坏。常见的划分准则有Mini cut,Average cut,Normalized cut,Min-max cut,Ratio cut,MNcut等。 Mini cut准则容易出现分割出只包含几个顶点的较小子图的歪斜分割现象,Ratio cut和Normalized cut等在一定程度上可以避免这种现象,但是当类间重叠严重时歪斜分割现象仍旧会发生。Chris Ding等人提出的基于Min-max cut的图划分方法充分体现了“子图内部相似度最大,子图之间的相似度最小”原则,能够产生比较平衡划分。
上述五种划分都是不断地将图划分为2个子图的反复迭代运算过程,当划分函数的最小值满足一定的条件时迭代过程便会终止,相应的函数可以称为2-way划分函数。 Meilă和Xu[64]认为可以同时把图划分为k个子图并于2004年提出了一种k-way规范割目标函数,而且对于参数k的选取问题也作了分析说明。
我们可以发现当k=2时,MNcut与Ncut两者是等价的。
③ 将一张图二值化后,有很多连通区域,我想分别求出每一块连通区域的面积,不知道有什么好一点的算法
图像处理里有一种叫做Labeling处理的算法。
可以把二值图划分区域,标出不同的区域编号。
只要计算每种编号的个数,就是对应区域的面积了。
如果没看懂,不是算法难,是我表达的不好。哈。
④ 图像处理的算法有哪些
图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
1.二值化操作
图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
2.直方图处理
直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。
3.模板卷积运算
模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。
⑤ 遥感图像分类法
图像分类是与图像信息提取和增强不同的遥感图像处理中另一重要的方面,与图像增强后仍需人为解译不同,它企图用计算机做出定量的决定来代替人为视觉判译步骤。因此,分类处理后输出的是一幅专题图像。在此图像中,原来图像中的每一个象元依据不同的统计决定准则被划归为不同的地表覆盖类,由于是一种统计决定,必然伴随着某种错误的概率。因此,在逻辑上的合理要求是,对每一个象元所做的决定,应是使整个被分类面积即对大量单个象元的分类的某个错误判据为最小。
以下是几种常用的遥感图像分类方法:
1.最大似然分类(maximum likelihood classification)
最大似然分类是一种基于贝叶斯判别准则的非线性监督分类方法,需要知道已知的或确定的训练样区典型标准的先验概率P(wi)和条件概率密度函数P(wi,x)。P(wi)通常根据各种先验知识给出或假定它们相等:P(wix)则是首先确定其分布形式,然后利用训练样本估计其参数。一般假设为正态分布,或通过数学方法化为正态分布。其判别函数集为:
Di(x)=P(wix),i=1,2,…,m (2-2)
如果Di(x)≥ Dj(x),则x属于wi类。其中,j≠i,j=1,2,…,m。m为类别数。
从上述最大似然分类的说明看,其关键就在于已知类别的定义,先验概率的确定,参与分类的变量的好坏和结果误差评价。直到现在,最大似然分类至少还有两个缺点:一是事先大量人力已知光谱类的选择和定义:二是需要长时间的计算机分类计算时间。实际上这也使得最大似然分类法遥感应用受到了限制,因此许多人专门研究改进算法以便解决和缩减图像分类的时间,提高分类的精度。Solst和Lillesand(1991)为了解决已知类别定义消耗大量人力的缺点,发展了半自动训练法进行已知光谱类的定义。Fabio Maselli等(1992)利用Skidmore和Tumer提出的非参数分类器计算出各已知类训练集的先验概率,然后将它们插入常规的最大似然分类过程中进行分类。该方法融合了非参数和参数分类过程的优点,提高了分类的精度。
通常情况下,地形会影响到训练集数据,这样训练集光谱数据就偏离了最大似然分类的假设条件正态分布,从而常规的最大似然分类法在地形起伏较大的地区效果并不太好。为了解决这一问题,C.Conese和G.Maracchi和F.Maselli(1993)提出了一种改进的最大似然分类算法,即去掉每一类数据集中与第一主成分相关的信息(地形信息)然后再进行分类。通过试验,这种方法是有效的,分类精度得到了提高。
K.Arai(1993)用光谱和空间信息进行分类改进了最大似然分类方法。该方法简单易行,大大提高了正确分类的概率。C.Conese和Fabio Maselli(1992)用误差矩阵提高最大似然分类面积估计的精度。Irina Kerl(1996)加最大似然分类精度的一种方法,即多概率比较法。他对同一遥感数据的原始波段、主成分和植被指数的22种组合进行了最大似然分类,发现没有一种波段组合的分类能给出图像中所有土地利用类型的精确分类,每一波段组合仅对图像中的一两类土地利用类型分类有效。因此他提出将能有效区分出所要决定的土地利用类型的几个波段组合的分类结果进行组合来进行图像分类,并称这种方法为多概率比较法,这种方法的基础就是图像数据不同波段组合的分类结果之间分类概率大小的比较。应用这种方法提高了分类的精度。
2.最小距离分类(minimum distance classification)
最小距离分类是一种线性判别监督分类方法,也需要对训练区模式样本进行统计分析,是大似然分类法中的一种极为重要的特殊情况。最小距离分类在算法上比较简单,首先需选出要区分类别的训练样区,并且从图像数据中求出各类训练样区各个波段的均值和标准差,然后再计算图像中其他各个象元的灰度值向量到各已知类训练样区均值向量之间的距离。如果距离小于指定的阈值(一般取标准差的倍数),且与某一类的距离最近,就将该象元划归为某类。因此称为最小距离分类。该方法的精度主要取决于已知类训练样区的多少和样本区的统计精度。另外,距离度量的方法不同,分类的结果也不相同,常见的有:
(1)明氏距离(minkowski distance)
中亚地区高光谱遥感地物蚀变信息识别与提取
式中Tij=-Tij。
③经过①②步后,随机象元X被划归为正确的类。
另外,通过对参与计算变量的排序和部分一总和逻辑的考虑,可大大降低该算法计算的时间。与最小距离(欧氏距离)和最大似然分类器相比,整体平均分类器所用时间最少,分类精度与最小距离大致相同,对像农田面积和森林这样的名义类型的分类十分有效。
Haluk Cetin(1996)提出了一种分类方法:类间距离频率分布法(interclass distance frequency dis-tribution),这是多光谱数据非参数分类方法的一种。类间距离频率分布过程简单,是一种有力的可视化技术,它图形地显示多光谱数据和类分布。首先选择感兴趣的类,这些类的统计信息从典型的训练样区可获得。利用类的平均测量矢量计算多光谱数据中每个象元的距离,并存放在一个两维数据分布数组中。选择其他类的训练区,训练区数据的分布通过距离计算可获得。通过可视化地检查结果,建立分类查询表(look-up table),然后利用分类查询表进行多光谱图像数据的分类,具体细节请参见原文。
H.N.Srikanta Prakash等(1996)改进了遥感数据凝聚聚类分析,这是一种基于相互近邻概念,用来进行多光谱数据分类的非参数、层次、凝聚聚类分析算法。该方法定义了围绕象元的感兴趣区域(area of interest around each pixel),然后在它内部寻找分类时初始合并操作需要的k最近邻,将象元的特征值、波段值和象元的相对位置值一起考虑,提出了改进的距离量度,这样,大大减少了计算的时间和内存的需求,降低了分类的误差概率。
Steven E.Franklin和Bradley A.Wilson(1992)设计了3阶段分类器进行遥感图像的分类,它由一个基于四叉树的分割算子、一个高斯最小距离均值测试和一个包括辅助地理网数据和光谱曲线测量的最终测试构成。与最大似然分类技术相比,3阶段分类器的总体分类精度得到了提高,减少计算时间,另外仅需最少的训练样区数据(它们在复杂地形区很难获得)。
⑥ 计算机视觉领域主流的算法和方向有哪些
人工智能是当下很火热的话题,其与大数据的完美结合应用于多个场景,极大的方便了人类的生活。而人工智能又包含深度学习和机器学习两方面的内容。深度学习又以计算机视觉和自然语言处理两个方向发展的最好,最火热。大家对于自然语言处理的接触可能不是很多,但是说起计算机视觉,一定能够马上明白,因为我们每天接触的刷脸支付等手段就会和计算机视觉挂钩。可以说计算机视觉的应用最为广泛。
目标跟踪,就是在某种场景下跟踪特定对象的过程,在无人驾驶领域中有很重要的应用。目前较为流行的目标跟踪算法是基于堆叠自动编码器的DLT。语义分割,则是将图像分为像素组,再进行标记和分类。目前的主流算法都使用完全卷积网络的框架。实例分割,是指将不同类型的实例分类,比如用4种不同颜色来标记4只猫。目前用于实例分割的主流算法是Mask R-CNN。
⑦ 图像分类处理简介
数字图像的恢复、增强,乃至复合处理,归根到底只是改善图像的品质,提高图像的可解译性。但处理系统(计算机)并未对图像上地物的类别作出“判决”(解译)。由计算按一定的判别模式来自动完成这一“判决”,便是图像分类处理的过程。
图像分类处理的最终目标是智能化,使遥感图像处理发展成为一种人工智能系统。广义的分类处理,既包括波谱信息的分类,也包括空间信息的分类。后者一般包括图形识别、边缘和线条信息的检测与提取,以及纹理结构分析等,通常也称图像的空间信息分析。关于这一部分对于地质工作者显然感兴趣的内容,可参阅文献[3]等着作。限于篇幅,这里仅介绍按波谱信息分类的基本概念。
(一)图像分类的依据
一般来说,同一类地物有着相似的波谱,在多波段遥感的数字图像中,可以粗略地用它们在各个波段上的像元值的连线(亨利曲线)来表示(图4-29A);由于受光照条件、环境背景等因素的影响,在实际的多维波谱空间中,它们的像元值向量往往不是一个点,而是呈点群分布(集群),不同地物的点群处在不同的位置(图4-29B);不仅如此,在实际图像中,不同地物的波谱集群还存在有交叉过渡,受图像分辨力的限制,一个像元中可能包括有若干个地物类别,即所谓“混合像元”。因此,对不同集群的区分一般要依据它们的统计特征(统计量)。例如,集群位置用均值向量表示、点群的中心及离散度常用标准差或协方差来量度等等;数字图像常用的几种统计量见表4-4。
图4-29 索尔顿湖和因佩里亚谷地陆地卫星MSS数字图像上主要几种地物的光谱反射比曲线和集群分布
表4-4 数字图像常用的统计量
图像分类处理的实质就是按概率统计规律,选择适当的判别函数、建立合理的判别模型把这些离散的“集群”分离开来,并作出判决和归类。通常的做法是,将多维波谱空间划分为若干区域(子空间),位于同一区域内的点归于同一类。子空间划分的标准可以概括为两类:①根据点群的统计特征,确定它所应占据的区域范围。例如,以每一类的均值向量为中心,规定在几个标准差的范围内的点归为一类;②确定类别之间的边界,建立边界函数或判别函数。不论采取哪种标准,关键在于确定同一类别在多维波谱空间中的位置(类的均值向量)、范围(协方差矩陈)及类与类边界(判别函数)的确切数值。按确定这些数据是否有已知训练样本(样区)为准,通常把分类技术分为监督和非监督两类。
(二)非监督分类
非监督分类是在没有已知类别的训练数据及分类数的情况下,依据图像数据本身的结构(统计特征)和自然点群分布,按照待分样本在多维波谱空间中亮度值向量的相似程度,由计算机程序自动总结出分类参数,进而逐一对像元作归类,通常也称聚类(集群)分析。使用的方法有图形识别、系统聚类、分裂法和动态聚类等。
其中,比较实用的是动态聚类。它是首先根据经验和分类数,选定若干个均值向量,作为“种子”,建立一批初始中心,进行初步概略的分类,然后根据规定的参数(阈值)检验分类结果,逐步修改调整分类中心,再重新分类,并根据各类离散性统计量(如均方差等)和不同类别之间可分离性统计量(如类间标准化距离等),进行类的合并或分裂;此后再修改中心,直至分类结果合理为止。动态聚类中,聚类中心和分类数可以按客观的波谱特征自动调整,分类效果一般比较好,但分类结果的确切含义(类别的属性)需另作分析,从实况调查或已有的地面资料中去确定它们的地物类型。
非监督分类由于事先不需训练样本,故处理速度较快,较客观,并能为监督分类的训练样区选择提供参照,一般在有目的的监督分类之前进行。
(三)监督分类
监督分类一般是先在图像中选取已知样本(训练区)的统计数据,从中找出分类的参数、条件,建立判别函数,然后对整个图像或待分类像元作出判别归类。遥感图像处理中常用的监督分类方法有最小距离法、费歇尔线性判别法、贝叶斯线性和非线性判别法(最大似然法)等。
其中,最小距离法在算法上比较简单:首先在图像显示屏上选出训练样区,并且从图像数据中求出训练样区各个波段的均值和标准差;尔后再去计算其它各像元的亮度值向量到训练样区波谱均值向量之间的距离。如果距离小于指定的阈值(一般取标准差的倍数),且与某一类的距离最近,遂将该像元归为某类。该分类法的精度取决于训练样区(地物类别)的多少和样本区的统计精度。由于计算简便,并可按像元顺序逐一扫描归类,一般分类效果也较好,因而是较常用的监督分类方法。
最大似然法也是常用的监督分类方法之一。它是用贝叶斯判别原则进行分析的一种非线性监督分类。简单地说,它可以假定已知的或确定的训练样区典型标准的先验概率,然后把某些特征归纳到某些类型的函数中,根据损失函数的情况,在损失最小时获得最佳判别。该法分类效果较好,但运算量较大。
监督分类的结果明确,分类精度相对较高,但对训练样本的要求较高,因此,使用时须注意应用条件,某一地区建立的判别式对别的地区不一定完全适用。此外,有时训练区并不能完全包括所有的波谱样式,会造成一部分像元找不到归属。故实际工作中,监督分类和非监督分类常常是配合使用,互相补充的。
图像分类处理目前在农林、土地资源遥感调查中应用较广。对于地质体的分类,由于干扰因素较大,不容易取得十分理想的效果,故在地质应用上尚不很普遍。但最近已陆续出现了一批使用分类技术的遥感地质应用成果,较多的是用经变换(比值、K-L等)处理的图像再作分类处理,用于岩性填图或热液蚀变填图等,是值得重视的发展方向。
⑧ 图像分类的分类方法
基于色彩特征的索引技术
色彩是物体表面的一种视觉特性,每种物体都有其特有的色彩特征,譬如人们说到绿色往往是和树木或草原相关,谈到蓝色往往是和大海或蓝天相关,同一类物体往拍几有着相似的色彩特征,因此我们可以根据色彩特征来区分物体.用色彩特特征进行图像分类一可以追溯到Swain和Ballard提出的色彩直方图的方法.由于色彩直方图具有简单且随图像的大小、旋转变化不敏感等特点,得到了研究人员的厂泛关注,目前几乎所有基于内容分类的图像数据库系统都把色彩分类方法作为分类的一个重要手段,并提出了许多改进方法,归纳起主要可以分为两类:全局色彩特征索引和局部色彩特征索引。
基于纹理的图像分类技术
纹理特征也是图像的重要特征之一,其本质是刻画象素的邻域灰度空间分布规律由于它在模式识别和计算机视觉等领域已经取得了丰富的研究成果,因此可以借用到图像分类中。
在70年代早期,Haralick等人提出纹理特征的灰度共生矩阵表示法(eo一oeeurrenee matrix representation),这个方法提取的是纹理的灰度级空间相关性(gray level Spatial dependenee),它首先基于象素之间的距离和方向建立灰度共生矩阵,再由这个矩阵提取有意义的统计量作为纹理特征向量。基于一项人眼对纹理的视觉感知的心理研究,Tamuar等人提出可以模拟纹理视觉模型的6个纹理属性,分别是粒度,对比度,方向性,线型,均匀性和粗糙度。QBIC系统和MARS系统就采用的是这种纹理表示方法。
在90年代初期,当小波变换的理论结构建一认起来之后,许多研究者开始研究
如何用小波变换表示纹理特征。smiht和chang利用从小波子带中提取的统计量(平均值和方差)作为纹理特征。这个算法在112幅Brodatz纹理图像中达到了90%的准确率。为了利用中间带的特征,Chang和Kuo开发出一种树型结构的小波变化来进一步提高分类的准确性。还有一些研究者将小波变换和其他的变换结合起来以得到更好的性能,如Thygaarajna等人结合小波变换和共生矩阵,以兼顾基于统计的和基于变换的纹理分析算法的优点。
基于形状的图像分类技术
形状是图像的重要可视化内容之一在二维图像空间中,形状通常被认为是一条封闭的轮廓曲线所包围的区域,所以对形状的描述涉及到对轮廓边界的描述以及对这个边界所包围区域的描述.目前的基于形状分类方法大多围绕着从形状的轮廓特征和形状的区域特征建立图像索引。关于对形状轮廓特征的描述主要有:直线段描述、样条拟合曲线、傅立叶描述子以及高斯参数曲线等等。
实际上更常用的办法是采用区域特征和边界特征相结合来进行形状的相似分类.如Eakins等人提出了一组重画规则并对形状轮廓用线段和圆弧进行简化表达,然后定义形状的邻接族和形族两种分族函数对形状进行分类.邻接分族主要采用了形状的边界信息,而形状形族主要采用了形状区域信息.在形状进行匹配时,除了每个族中形状差异外,还比较每个族中质心和周长的差异,以及整个形状的位置特征矢量的差异,查询判别距离是这些差异的加权和。
基于空间关系的图像分类技术
在图像信息系统中,依据图像中对象及对象间的空间位置关系来区别图像库中的不同图像是一个非常重要的方法。因此,如何存贮图像对象及其中对象位置关系以方便图像的分类,是图像数据库系统设计的一个重要问题。而且利用图像中对象间的空间关系来区别图像,符合人们识别图像的习惯,所以许多研究人员从图像中对象空间位置关系出发,着手对基于对象空间位置关系的分类方法进行了研究。早在1976年,Tanimoto提出了用像元方法来表示图像中的实体,并提出了用像元来作为图像对象索引。随后被美国匹兹堡大学chang采纳并提出用二维符号串(2D一String)的表示方法来进行图像空间关系的分类,由于该方法简单,并且对于部分图像来说可以从ZD一String重构它们的符号图,因此被许多人采用和改进,该方法的缺点是仅用对象的质心表示空间位置;其次是对于一些图像来
说我们不能根据其ZD一string完个重构其符号图;再则是上述的空间关系太简单,实际中的空间关系要复杂得多。,针对这些问题许多人提出了改进力一法。Jungert根据图像对象的最小包围盒分别在:x轴方向和y轴上的投影区间之间的交叠关系来表示对象之间的空间关系,随后Cllallg和Jungert等人又提出了广义ZD一string(ZDG一String)的方法,将图像对象进一步切分为更小的子对象来表示对象的空间关系,但是该方法不足之处是当图像对象数日比较多且空间关系比较复杂时,需要切分的子对象的数目很多,存储的开销太大,针对此Lee和Hsu等人提出了ZDC一string的方一法,它们采用Anell提出的13种时态间隔关系并应用到空间投影区问上来表达空间关系。在x轴方向和y轴方向的组合关系共有169种,他提出了5种基本关系转换法则,在此基础上又提出了新的对象切分方法。采用
ZDC一string的方法比ZDG一string切分子对象的数目明显减少。为了在空间关系中保留两个对象的相对空间距离和对象的大小,Huang等人提出了ZDC书string的方法提高符号图的重构精度,并使得对包含对象相对大小、距离的符号图的推理成为可能。上述方法都涉及到将图像对象进行划分为子对象,且在用符号串重构对象时处理时间的开销都比较大,为解决这些方法的不足,Lee等人又提出了ZDB一String的方法,它不要求对象进一步划分,用对象的名称来表示对象的起点和终点边界。为了解决符号图的重构问题,Chin一ChenCllang等人提出了面向相对坐标解决符号图的重构问题,Chin一ChenChang等人提出了面向相对坐标符号串表示(RCOS串),它们用对象最小外接包围盒的左下角坐标和右上角坐标来表示对象之间的空间关系.
对于对象之间的空间关系采用Allen提出的13种区间表示方法。实际上上述所有方法都不是和对象的方位无关,为此Huang等人又提出了RSString表示方法。虽然上述各种方法在对图像对象空间信息的分类起到过一定作用,由于它们都是采用对象的最小外接矩形来表示一个对象空间位置,这对于矩形对象来说是比较合适的,但是当两个对象是不规则形状,且它们在空间关系上是分离时,它们的外接矩形却存在着某种包含和交叠,结果出现对这些对象空间关系的错误表示。用上述空间关系进行图像分类都是定性的分类方一法,将图像的空间关系转换为图像相似性的定量度量是一个较为困难的事情。Nabil综合ZD一String方法和二维平面中对象之间的点集拓扑关系。提出了ZD一PIR分类方法,两个对象之间的相似与否就转换为两个图像的ZD一PIR图之间是否同构。ZD一PIR中只有图像对象之间的空间拓扑关系具有旋转不变性,在进行图像分类的时候没有考虑对象之间的相对距离。
⑨ 如何实现一个不规则排列的图片布局算法
图像处理里有一种叫做Labeling处理的算法。可以把二值图划分区域,标出不同的区域编号。只要计算每种编号的个数,就是对应区域的面积了。如果没看懂,不是算法难,是我表达的不好。哈。
⑩ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。