㈠ 量化交易是什么量化交易有哪些优缺点
近些日子,一则“量化交易是什么?”的问题,引发了广大网友们的热议,在网上闹的沸沸扬扬。那么,量化交易是什么呢?量化交易也可以叫自动化交易,就是使用数学模型来自动交易,摒弃了认为主观的判断。量化交易的优点是什么?量化交易的优点就是去除了认为的操作,不会受到情绪的影响,都是拿概率说话。量化交易的缺点是什么?量化交易的缺点是不懂得炒作热点,不会分析时事。那么具体的情况是什么呢?我来给大家分享一下我的看法。
一.量化交易是什么量化交易,也叫自动化交易。就是指利用数学的模型,制作出一套能够稳定盈利的方法,然后让计算机自动的进行买如何卖出的操作。量化交易模型越好,那么交易的盈利能力,以及稳定性则是越强。
以上就是我对于这个问题所发表的看法,纯属个人观点,仅供参考。大家有什么不同的看法都可以在评论区留言,大家一起讨论一下。大家看完,记得点赞,加关注哦。
㈡ 如何识别优秀的量化交易策略
区分量化交易策略这个还是需要深入研究的,下面这个文章就是针对你的问题做出的回答,你看看对你有没有帮助,我给你贴出来
什么是量化交易?
量化交易也称为算法交易,是严格按照计算机算法程序给出的买卖决策进行的证券交易。
大家容易把量化交易与技术分析混淆,实际上量化交易的内容丰富的多。许多量化交易系统在进行建模和运算的时候会用到基本面数据,比如估值、市值、现金流等,还有的算法将新闻作为变量进行计算。而技术分析基本只需要用到交易标的的量价数据。
1、各大券商的研究报告。
这是一个非常好的学习资料来源,各大券商会有各种量化策略报告,包括基本面量化、技术指标量化、情绪指标量化等。这些报告中的一部分是以非常严谨的方式做的研究,得出结论的可靠程度是很高的,小善平时喜欢在WIND或者CHOICE金融终端里面打开金融工程这个专栏翻看报告,一些在量化研究里面做的很优秀的如国泰君安、海通这些大券商的报告是非常值得阅读的。
来源:Wind资讯
2、量化社区
国内的量化投资火起来后,量化社区发展壮大的速度非常快,目前人气比较高的国内社区有优矿、聚宽、米筐等,这上面汇集了不少矿工分享和讨论量化交易策略,社区还提供免费的回测平台供缺少数据的同学使用。其实国外的量化社区更丰富,如果英文足够好,去Bing或者Google一下就找到了。我们就可以接触到量化交易领域中绝大多数的策略思想了。
我们来看看如何认识交易策略。
什么更宝贵,策略本身还是甄别策略的能力?
对于量化交易研究者而言,真正困难的地方并不是缺乏交易理念,而是缺乏甄别策略的能力。这种甄别能力需要我们判断一项策略是否适合自己的实际情况和交易目标(比方说大基金用的策略要求资金容量大,这可能会以牺牲收益率为代价,但是小资金完全可以用大资金没法使用的更高收益率的策略),需要在花费大量时间进行回测之前就能判断出策略是否可行。
寻找适合自己的策略需要考虑哪些主要因素?
1、交易时间。
2、编程水平。
3、资金规模。
4、收益目标。
识别貌似可行的策略及其陷阱
当一个看上去不错的策略呈现在你面前的时候,如何去评价这个策略?这就是本篇文章的重点:识别貌似可行的策略及其陷阱。投资者可以使用这些方法快速评价拟投资产品所使用策略的好坏,量化交易爱好者也可以在进行严格的策略回测之前进行一次省时省力的评估。
1、策略与基准相比收益如何?收益的持续性如何?这个问题主要需要回答策略能否跑赢基准和是否有够高的稳定性。
2、挫跌多深、多久?
用作者的话说,如果一项策略近期正在亏钱,它就正在经历挫跌。时刻t的挫跌被定义为:当前净值(假定期间内未发生任何赎回或注资)与t时刻或之前的净值曲线最大值之差。“最大挫跌”是净值曲线最大值与之后的净值曲线最小值之差。净值的最大值又被称为“高水位线”。“最长挫跌期”是指净值重返亏损前的水平所花费的最长时间。探究这个问题的意义在于搞清楚:在投资组合清盘或策略结束之前,你能承受多深和多久的挫跌?是20%和3个月,还是10%和1个月?用图比较容易理解这个定义:
图片来自原书
3、交易成本对策略的影响。
这包括两方面,一方面是因为证券买卖都会发生手续费,交易越频繁,成本对策略的盈利的侵蚀就越多。另外一方面是流动性成本,当你以市场价格买卖证券的时候,需要支付买卖价差。如果你用限价指令买卖证券,确实可以避免流动性成本,但是却要承担机会成本,因为你可能买不到或者卖不出去。
4、数据有无存活偏差?
股票价格的历史数据库往往不包括由于破产、退市、兼并或者收购而消失的股票,因为回测数据库中只有幸存者,所以会存在所谓的存活偏差。使用有存活偏差的数据进行回测是很危险的,因为这样会夸大策略的历史业绩。
5、策略的业绩如何随着时间的变化而变化?
这是一个很重要的问题,因为有很多策略早些年的业绩要远远好于现在,在出色的多年累计业绩之中,早些年或者某些年的贡献特别突出,我们应当对这种非常隐蔽的误导提高警惕,这背后主要有两方面的原因:一方面是数据的存活偏差导致,回测回溯的越早,消失的股票也越多,偏差就越大。另外一方面是金融市场随着制度变化或者交易者的构成的变化会在底层生态上面存在“状态转换”,因此可能出现在之前某段时间内该策略表现特别好但是后来表现平平的情况。考虑到这两方面的原因,我们应当重点关注某个策略近几年的表现。
6、策略是否存在数据迁就偏差?
数据迁就偏差的本质是通过对参数进行过度的优化,令策略历史业绩看上去非常棒,这会产生什么问题呢?数据迁就偏差的本质是经过过度优化之后呈现的数据模式已经远远偏离真实世界,使得模型与过去发生但是未来不会再重现的任何偶然历史事件吻合,其结果就是该策略的未来业绩与回测结果截然不同。一般而言,策略的规则越多,模型的参数越多,就越有可能发生数据迁就偏差。用通俗的话说,如果用一个集所有你喜欢的女星之优点的美女作为模板去找老婆,能找到才怪。
7、国内做量化交易的平台有哪些?
好的比如跟投赢家,详细内容可以通过官网了解,本文不做介绍
最重要的一点:深刻认识盈亏同源
说了这么多,小善觉得无论对于投资者还是交易者而言,以上对量化交易策略优劣的快速评价方法应该都是很有启发的。但是小善在这里还想特别强调一个事情,即天下没有完美的策略,就如同天下没有完美的老婆一样。如果一个策略是整体来看是赚钱的并且你打算使用,你就要忍受他的缺点,如果你无法忍受缺点,那你就不要用这个策略,或者不要买使用这个策略的产品,因为盈亏同源。
任何一个策略,都无法做到百分之百盈利,亏损是策略的一个不可分割的部分。用更为通俗的话来说,你的盈利和你的亏损的本源是一致的,这同样的本源带来了收益也同时带来了亏损,如果你试图躲开亏损,那你必然也同时躲开了盈利。只有正确深刻地认识到这一点,你才有可能以正确的态度面对策略中的亏损、正确的评估最大挫跌和最长挫跌自己是否可以忍受,只有正确地认识了亏损,你才有可能稳定和持续地盈利。
(全文完)
㈢ 量化交易都有哪些主要的策略模型
国内的量化策略可以简单分为三个类型,Alpha策略,CTA策略以及高频交易策略。
1.Alpha策略
Alpha策略包含不同类别:
按照研究内容来分,可分为基本面Alpha(或者叫财务Alpha)和量价Alpha。业内普遍不会将这两种Alpha完全隔离开。但是不同团队会按照其能力、擅长方向以及信仰,在做因子上有所偏向。有的团队喜欢用数据挖掘的方式做量价因子,而有的团队喜欢从基本面财务逻辑的角度出发,精细地筛选财务因子。
按照是否对冲可以分为两类。全对冲的叫做Alpha策略,不对冲的在市面上常被称作指数增强策略。二者所用模型一样,但后者少了期货的对冲。缺少对冲有坏处也有好处,坏处是这种策略的收益曲线是会有较大的回撤。但好处方面,在大涨的年份,这种策略的表现会特别好;从长期看, 公司可以赚取BETA分红收益, 并且可以吸引看好指数的客户。相比之下而对冲Alpha策略一般在大牛市中会远远跑输指数;此外不对冲的好处是节约资金,对冲的Alpha策略至少要放20~30%的资金在期货端用来做保证金。
2.CTA策略
关于CTA策略,我是在2010年开始做CTA策略的。CTA改进到天字一号量化是我的转折点,多品种组合,单次买进控制低风险度,1%~3%的风险度,实践中明白了如何提高盈亏比。现在我的一个实盘账户资金,7年盈利5.68倍,他适合多品种,多种风险度,日线,小时线,15分钟线都能够支持。
3.高频交易策略
第三类策略就是高频交易策略,高频交易在国内的主要应用有以下几类,期货趋势、期货套利、期权等做高频交易的基本上都是私募,但高频交易的产品基本上不会对外募集或者极少对外募集。高频交易有收益高回撤小的优点,但是做高频的软硬件投入也都昂贵(比如一台服务器的花费在8-10万左右) 。更高频的是千分之一秒以上的,一套机器几百万元,这种是单次盈利小,见利就收,累积起来也有不错的收益。这种适合大资金,高学历,高投入团队来做。
㈣ 在中国,做量化交易一天的工作是怎样的
做量化交易一天的工作:
8:00~9:00: 打开交易策略,设置一些运营参数
9:00~9:30: 观察策略运转,确保没有问题
9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法
15:30~17:00: 分析交易记录, 确定第二天的交易计划
17:00~18:00: 运动
岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;
岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;
理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);
有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;
(4)量化交易算法分析数据模型和优化扩展阅读
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,
极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
㈤ 股市中的量化交易是什么意思呢
量化交易(quantitative Trading)是利用数学、统计、计算机的模型和方法来指导在金融市场的交易,可以自动下单业可以半自动下单,这个不是核心,核心在于是不是系统化交易(systematic trading)。
比如主观交易会看K线交易,量化交易业会,但区别在于量化交易可以在历史数据上回测各种交易规则,找到表现好的,然后才用来交易。这或许会有过度拟合的风险,但也有一些方法克服。
量化交易虽然有很多优点,但是真的能战胜市场,并且保证胜率,我觉得很难说。
㈥ 如何对数据进行量化分析
对事物进行量化处理,最主要是建立一个合理的维度,达到这个度就怎样,没到这个度又怎样。每个公司的情况不一样,有些大公司的员工只做一件事情也有的制作半件的都有,而在一些刚创业起步,50人以内的公司,很多都是一人兼多职的。
因此如果没有一个好的合理的维度去定这个事物的数据,做的事情多的员工就会慢慢的没有积极性,对公司是不利的。比如说100万以下是正常要求,100-500万是一个一级维度,在这个维度里继续拿出多出的部分进行大比例分配给业务员,如100万的是2%提成,多出的按3%提成。
还有就是产品的单价是50元低价给到业务员,如果业务员卖出的产品比50高,就将高出的部分再进行50%或者更多的奖励,相信业务员都会尽最大努力去销售。再对每个单和每个月每个季度对每个业务员进行一次考核,符合管理规定的积一个维度,后面的都按维度来进行资金待遇分配。
相关信息
量化分析就是将一些不具体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。人类对于股市波动规律的认知,是一个极具挑战性的世界级难题。量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
虽然量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学着名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型。
㈦ 个人做量化交易需要注意些什么
一说到量化投资,一下子蹦出来一堆厉害的语汇,例如:FPGA,微波加热,高频率,纳秒等级延迟时间这些。这种全是高频交易中的语汇,高频交易的确是基金管理公司做起来较为适合,平常人搞起来门槛较为高。
模拟交易最后实际效果一般在于你的程序流程是不是灵便,是不是优良的风险性和资金分配优化算法。
总结:对于说本人做量化投资是不是可靠,上边的步骤早已表明了实际可策划方案,可靠性显而易见。对于能否赚到钱,就看本人的修为了更好地。
㈧ 个人投资者如何量化交易
量化投资是运用机器学习、模式识别、数据挖掘等方法建立数学模型,形成投资策略并做成计算机程序,进行自动化交易的一种投资方式。如果从大类上划分,它又可分为“量化策略”和“算法交易”。
简单来说,前者是利用量化的方式,对金融市场进行分析、判断从而交易的策略。当我们研究策略时,可以在历史数据上回测,对过去指定时间段进行模拟交易,从而得到的收益以及净值变情况,并通过实时数据进行策略仿真,模拟策略的实时交易进行结果的预判。而算法交易是一种程序化交易方式,利用特定算法决定交易下单的时机、价格乃至最终下单的数量等,可以减少交易摩擦成本。
量化投资的方式可以帮助我们避免在市场极度狂热或悲观的情况下作出非理性的投资决策。于是,越来越多的投资者开始参与其中。
【拓展资料】
一、何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
量化交易是以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
二、量化交易的发展
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了1.4倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。目前,绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
㈨ 如何开始数据分析和量化交易
首先,数据分析的话,你这边要有足够的数据,这些数据的话现在有专门出售数据的公司。其次,你要在数据当中去找寻一些规律,建立自己的交易模型。然后对模型要进行回测和优化。然后可以尝试量化交易了