❶ 什么是knn算法
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。在应用KNN算法解决问题的时候,要注意两个方面的问题——样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,feature
weighted
KNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。
❷ 文本分类器(基于KNN算法),语言最好是Matlab的,有测试数据集。。。。
function [ccr,pgroupt]=knnt(x,group,K,dist,xt,groupt)
%#
%# AIM: to classify test set objects or unknown objects with the
%# K Nearest Neighbour method
%#
%# PRINCIPLE: KNN is a supervised, deterministic, non-parametric
%# classification method. It uses the majority rule to
%# assign new objects to a class.
%# It is assumed that the number of objects in each class
%# is similar.
%# There are no assumptions about the data distribution and
%# the variance-covariance matrices of each class.
%# There is no limitation of the number of variables when
%# the Euclidean distance is used.
%# However, when the correlation coefficient is used, the
%# number of variables must be larger than 1.
%# Ref: Massart D. L., Vandeginste B. G. M., Deming S. N.,
%# Michotte Y. and Kaufman L., Chemometrics: a textbook,
%# Chapter 23, 395-397, Elsevier Science Publishers B. V.,
%# Amsterdam 1988.
%#
%# INPUT: x: (mxn) data matrix with m objects and n variables,
%# containing samples of several classes (training set)
%# group: (mx1) column vector labelling the m objects from the
%# training set
%# K: integer, number of nearest neighbours
%# dist: integer,
%# = 1, Euclidean distance
%# = 2, Correlation coefficient, (No. of variables >1)
%# xt: (mtxn) data matrix with mt objects and n variables
%# (test set or unknowns)
%# groupt: (mtx1) column vector labelling the mt objects from
%# the test set
%# --> if the new objects are unknown, input [].
%#
%# OUTPUT: ccr: scalar, correct classification rate
%# pgroupt:row vector, predicted class label for the test set
%# 0 means that the object is not classified to any
%# class
%#
%# SUBROUTINES: sortlab.m: sorts the group label vector into classes
%#
%# AUTHOR: Wen Wu
%# Copyright(c) 1997 for ChemoAc
%# FABI, Vrije Universiteit Brussel
%# Laarbeeklaan 103 1090 Jette
%#
%# VERSION: 1.1 (28/02/1998)
%#
%# TEST: Andrea Candolfi
%#
function [ccr,pgroupt]=knnt(x,group,K,dist,xt,groupt);
if nargin==5, groupt=[]; end % for unknown objects
distance=dist; clear dist % change variable
if size(group,1)>1,
group=group'; % change column vector into row vector
groupt=groupt'; % change column vector into row vector
end;
[m,n]=size(x); % size of the training set
if distance==2 & n<2, error('Number of variables must > 1'),end % to check the number of variables when using correlation coefficient
[mt,n]=size(xt); % size of the test set
dis=zeros(mt,m); % initial values for the distance (matrix of zeros)
% Calculation of the distance for each test set object
for i=1:mt
for j=1:m % between each training set object and each test set object
if distance==1
dis(i,j)=(xt(i,:)-x(j,:))*(xt(i,:)-x(j,:))'; % Euclidian distance
else
r=corrcoef(xt(i,:)',x(j,:)'); % Correlation coefficient matrix
r=r(1,2); % Correlation coefficient
dis(i,j)=1-r*r; % 1 - the power of correlation coefficient
end
end
end
% Finding of the nearest neighbours
lab=zeros(1,mt); % initial values of lab
for i=1:mt % for each test object
[a,b]=sort(dis(i,:)); % sort distances
b=b(find(a<=a(K))); % to find the nearest neighbours indices
b=group(b); % the nearest neighbours objects
[ng,lgroup]=sortlab(b); % calculate the number of objects from each class in the nearest neighbours
a=find(ng==max(ng)); % find the class with the maximum number of objects
if length(a)==1 % only one class
lab(i)=lgroup(a); % class label
else
lab(i)=0; % more than one class
end
end
% Calculation of the success rate
if ~isempty(groupt)
dif=groupt-lab; % difference between predicted class label and known class label
ccr=sum(dif==0)/mt; % success rate
end
pgroupt=lab; % the output vector
❸ 三种经典的数据挖掘算法
算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。
1.KNN算法
KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。
2.Naive Bayes算法
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。
3.CART算法
CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。
在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。
❹ 文本分类的方法
文本分类问题与其它分类问题没有本质上的区别,其方法可以归结为根据待分类数据的某些特征来进行匹配,当然完全的匹配是不太可能的,因此必须(根据某种评价标准)选择最优的匹配结果,从而完成分类。 后来人们意识到,究竟依据什么特征来判断文本应当隶属的类别这个问题,就连人类自己都不太回答得清楚,有太多所谓“只可意会,不能言传”的东西在里面。人类的判断大多依据经验以及直觉,因此自然而然的会有人想到何让机器像人类一样自己来通过对大量同类文档的观察来自己总结经验,作为今后分类的依据。这便是统计学习方法的基本思想。
统计学习方法需要一批由人工进行了准确分类的文档作为学习的材料(称为训练集,注意由人分类一批文档比从这些文档中总结出准确的规则成本要低得多),计算机从这些文档中挖掘出一些能够有效分类的规则,这个过程被形象的称为训练,而总结出的规则集合常常被称为分类器。训练完成之后,需要对计算机从来没有见过的文档进行分类时,便使用这些分类器来进行。这些训练集包括sogou文本分类分类测试数据、中文文本分类分类语料库,包含Arts、Literature等类别的语料文本、可用于聚类的英文文本数据集、网易分类文本分类文本数据、tc-corpus-train(语料库训练集,适用于文本分类分类中的训练)、2002年中文网页分类训练集CCT2002-v1.1等。
现如今,统计学习方法已经成为了文本分类领域绝对的主流。主要的原因在于其中的很多技术拥有坚实的理论基础(相比之下,知识工程方法中专家的主观因素居多),存在明确的评价标准,以及实际表现良好。统计分类算法
将样本数据成功转化为向量表示之后,计算机才算开始真正意义上的“学习”过程。常用的分类算法为:
决策树,Rocchio,朴素贝叶斯,神经网络,支持向量机,线性最小平方拟合,kNN,遗传算法,最大熵,Generalized Instance Set等。在这里只挑几个最具代表性的算法侃一侃。
Rocchio算法
Rocchio算法应该算是人们思考文本分类问题时最先能想到,也最符合直觉的解决方法。基本的思路是把一个类别里的样本文档各项取个平均值(例如把所有 “体育”类文档中词汇“篮球”出现的次数取个平均值,再把“裁判”取个平均值,依次做下去),可以得到一个新的向量,形象的称之为“质心”,质心就成了这 个类别最具代表性的向量表示。再有新文档需要判断的时候,比较新文档和质心有多么相像(八股点说,判断他们之间的距离)就可以确定新文档属不属于这个类。 稍微改进一点的Rocchio算法不仅考虑属于这个类别的文档(称为正样本),也考虑不属于这个类别的文档数据(称为负样本),计算出来的质心尽量靠近正样本同时尽量远离负样本。Rocchio算法做了两个很致命的假设,使得它的性能出奇的差。一是它认为一个类别的文档仅仅聚集在一个质心的周围,实际情况往往不是如此(这样的数据称为线性不可分的);二是它假设训练数据是绝对正确的,因为它没有任何定量衡量样本是否含有噪声的机制,因而也就对错误数据毫无抵抗力。
不过Rocchio产生的分类器很直观,很容易被人类理解,算法也简单,还是有一定的利用价值的,常常被用来做科研中比较不同算法优劣的基线系统(Base Line)。
朴素贝叶斯算法
贝叶斯算法关注的是文档属于某类别概率。文档属于某个类别的概率等于文档中每个词属于该类别的概率的综合表达式。而每个词属于该类别的概率又在一定程度上 可以用这个词在该类别训练文档中出现的次数(词频信息)来粗略估计,因而使得整个计算过程成为可行的。使用朴素贝叶斯算法时,在训练阶段的主要任务就是估计这些值。
朴素贝叶斯算法的公式并不是只有一个。
首先对于每一个样本中的元素要计算先验概率。其次要计算一个样本对于每个分类的概率,概率最大的分类将被采纳。所以
其中P(d| Ci)=P(w1|Ci) P(w2|Ci) …P(wi|Ci) P(w1|Ci) …P(wm|Ci) (式1)
P(w|C)=元素w在分类为C的样本中出现次数/数据整理后的样本中元素的总数(式2)
这其中就蕴含着朴素贝叶斯算法最大的两个缺陷。
首先,P(d| Ci)之所以能展开成(式1)的连乘积形式,就是假设一篇文章中的各个词之间是彼此独立的,其中一个词的出现丝毫不受另一个词的影响(回忆一下概率论中变 量彼此独立的概念就可以知道),但这显然不对,即使不是语言学专家的我们也知道,词语之间有明显的所谓“共现”关系,在不同主题的文章中,可能共现的次数 或频率有变化,但彼此间绝对谈不上独立。
其二,使用某个词在某个类别训练文档中出现的次数来估计P(wi|Ci)时,只在训练样本数量非常多的情况下才比较准确(考虑扔硬币的问题,得通过大量观 察才能基本得出正反面出现的概率都是二分之一的结论,观察次数太少时很可能得到错误的答案),而需要大量样本的要求不仅给前期人工分类的工作带来更高要求 (从而成本上升),在后期由计算机处理的时候也对存储和计算资源提出了更高的要求。
但是稍有常识的技术人员都会了解,数据挖掘中占用大量时间的部分是数据整理。在数据整理阶段,可以根据词汇的情况生成字典,删除冗余没有意义的词汇,对于单字和重要的词组分开计算等等。
这样可以避免朴素贝叶斯算法的一些问题。其实真正的问题还是存在于算法对于信息熵的计算方式。
朴素贝叶斯算法在很多情况下,通过专业人员的优化,可以取得极为良好的识别效果。最为人熟悉的两家跨国软件公司在目前仍采用朴素贝叶斯算法作为有些软件自然语言处理的工具算法。
kNN算法
最近邻算法(kNN):在给定新文档后,计算新文档特征向量和训练文档集中各个文档的向量的相似度,得到K篇与该新文 档距离最近最相似的文档,根据这K篇文档所属的类别判定新文档所属的类别(注意这也意味着kNN算法根本没有真正意义上的“训练”阶段)。这种判断方法很 好的克服了Rocchio算法中无法处理线性不可分问题的缺陷,也很适用于分类标准随时会产生变化的需求(只要删除旧训练文档,添加新训练文档,就改变了 分类的准则)。
kNN唯一的也可以说最致命的缺点就是判断一篇新文档的类别时,需要把它与现存的所有训练文档全都比较一遍,这个计算代价并不是每个系统都能够承受的(比 如我将要构建的一个文本分类系统,上万个类,每个类即便只有20个训练样本,为了判断一个新文档的类别,也要做20万次的向量比较!)。一些基于kNN的 改良方法比如Generalized Instance Set就在试图解决这个问题。
kNN也有另一个缺点,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 SVM(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力)。
SVM 方法有很坚实的理论基础,SVM 训练的本质是解决一个二次规划问题(Quadruple Programming,指目标函数为二次函数,约束条件为线性约束的最优化问题),得到的是全局最优解,这使它有着其他统计学习技术难以比拟的优越性。 SVM分类器的文本分类效果很好,是最好的分类器之一。同时使用核函数将 原始的样本空间向高维空间进行变换,能够解决原始样本线性不可分的问题。其缺点是核函数的选择缺乏指导,难以针对具体问题选择最佳的核函数;另外SVM 训练速度极大地受到训练集规模的影响,计算开销比较大,针对SVM 的训练速度问题,研究者提出了很多改进方法,包括Chunking 方法、Osuna算法、SMO 算法和交互SVM 等。SVM分类器的优点在于通用性较好,且分类精度高、分类速度快、分类速度与训练样本个数无关,在查准和查全率方面都略优于kNN及朴素贝叶斯方法。
❺ knn算法是什么
KNN(K- Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。
介绍
KNN算法本身简单有效,它是一种lazy-learning算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
❻ 机器学习中算法的优缺点之最近邻算法
机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。
❼ knn分类算法 怎么处理定性数据
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.
注意,不是聚类算法.所以这种分类算法必然包括了训练过程.
然而和一般性的分类算法不同,knn算法是一种 懒惰算法 .它并非
像其他的分类算法先通过训练建立分类模型.,而是一种被动的分类
过程.它是边测试边训练建立分类模型.
算法的一般描述过程如下:
1.首先计算每个测试样本点到其他每个点的距离.
这个距离可以是欧氏距离,余弦距离等.
❽ 请问各位大神,用R语言进行knn文本分类的结果精确度较低,会由什么原因造成呢
变量数太多,根据斯坦福老师的观点,变量在6以下采用knn
❾ 如何使用 r 语言的 knn 算法进行分类
K最近邻分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻。
kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别(类似投票),并具有这个类别上样本的特性。
该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
❿ knn算法用来文本分类怎么样
一般