Ⅰ 批量梯度下降法一定可以到全局最优点吗
Linear Regression 的cost function如下:
拟合函数最终一定会收敛到全局最优解
如果损失函数是非凸函数则不一定,因为参数初值的设置必然影响最终收敛的位置,能否达到全局最优解主要取决于参数初值的设置。
批量梯度下降法就是最普通的梯度下降法而已,相比于随机梯度下降法来说只是更容易收敛到全局最优点,这是由于批量操作在一定程度上起到了淹没噪声影响的作用。但是,批量梯度下降法在损失函数为非凸函数的情况下仍然不能保证一定可以达到全局最优点。
Ⅱ 机器学习中的降维算法和梯度下降法
机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们就给大家重点介绍一下降维算法和梯度下降法。
降维算法
首先,来说一说降维算法,降维算法是一种无监督学习算法,其主要特征是将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,当特征量大的话,那么就给计算机带来了很大的压力,所以我们可以通过降维计算,把维度高的特征量降到维度低的特征量,比如说从4维的数据压缩到2维。类似这样将数据从高维降低到低维有两个好处,第一就是利于表示,第二就是在计算上也能带来加速。
当然,有很多降维过程中减少的维度属于肉眼可视的层次,同时压缩也不会带来信息的损失。但是如果肉眼不可视,或者没有冗余的特征,这怎么办呢?其实这样的方式降维算法也能工作,不过这样会带来一些信息的损失。不过,降维算法可以从数学上证明,从高维压缩到的低维中最大程度地保留了数据的信息。所以说,降维算法还是有很多好处的。
那么降维算法的主要作用是什么呢?具体就是压缩数据与提升机器学习其他算法的效率。通过降维算法,可以将具有几千个特征的数据压缩至若干个特征。另外,降维算法的另一个好处是数据的可视化。这个优点一直别广泛应用。
梯度下降法
下面我们给大家介绍一下梯度下降法,所谓梯度下降法就是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。好比将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;当然解决问题的方法有很多,梯度下降只是其中一个,还有很多种方法。
在这篇文章中我们给大家介绍了关于机器算法中的降维算法以及梯度下降法,这两种方法是机器学习中十分常用的算法,降维算法和梯度下降法都是十分实用的,大家在进行学习机器学习的时候一定要好好学习这两种算法,希望这篇文章能够帮助大家理解这两种算法。
Ⅲ 梯度下降法和粒子群优化算法的区别
粒子群(PSO)算法是近几年来最为流行的进化算法,最早是由Kenned和Eberhart于1995年提出.PSO 算法和其他进化算法类似,也采用“群体”和“进化”的概念,通过个体间的协作与竞争,实现复杂空间中最优解的搜索.PSO 先生成初始种群,即在可行解空间中随机初始化一群粒子,每个粒子都为优化问题的一个可行解,并由目标函数为之确定一个适应值(fitness value).PSO 不像其他进化算法那样对于个体使用进化算子,而是将每个个体看作是在n 维搜索空间中的一个没有体积和重量的粒子,每个粒子将在解空间中运动,并由一个速度决定其方向和距离.通常粒子将追随当前的最优粒子而运动,并经逐代搜索最后得到最优解.在每一代中,粒子将跟踪两个极值,一为粒子本身迄今找到的最优解 pbest ,另一为全种群迄今找到的最优解 gbest.由于认识到 PSO 在函数优化等领域所蕴含的广阔的应用前景,在 Kenned 和 Eberhart 之后很多学者都进行了这方面的研究.目前已提出了多种 PSO改进算法,并广泛应用到许多领域。
Ⅳ 优化算法有哪些
你好,优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。
对于连续和线性等较简单的问题,可以选择一些经典算法,例如梯度、Hessian
矩阵、拉格朗日乘数、单纯形法、梯度下降法等;而对于更复杂的问题,则可考虑用一些智能优化算法,例如你所提到的遗传算法和蚁群算法,此外还包括模拟退火、禁忌搜索、粒子群算法等。
这是我对优化算法的初步认识,供你参考。有兴趣的话,可以看一下维基网络。
Ⅳ 优化算法中梯度法,为什么梯度负方向下降最快
因为就那确定的点来说,梯度方向下降最快(有泰勒展开式得),而从全局来看,此点的最有方向(负梯度方向)不是全局的最优方向
Ⅵ 梯度下降法是什么
梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最陡下降法。
要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。
梯度下降一般归功于柯西,他在 1847 年首次提出它。Hadamard在 1907 年独立提出了类似的方法。Haskell Curry在 1944 年首先研究了它对非线性优化问题的收敛性,随着该方法在接下来的几十年中得到越来越多的研究和使用,通常也称为最速下降。
梯度下降适用于任意维数的空间,甚至是无限维的空间。在后一种情况下,搜索空间通常是一个函数空间,并且计算要最小化的函数的Fréchet 导数以确定下降方向。
梯度下降适用于任意数量的维度(至少是有限数量)可以看作是柯西-施瓦茨不等式的结果。那篇文章证明了任意维度的两个向量的内(点)积的大小在它们共线时最大化。在梯度下降的情况下,当自变量调整的向量与偏导数的梯度向量成正比时。
修改
为了打破梯度下降的锯齿形模式,动量或重球方法使用动量项,类似于重球在被最小化的函数值的表面上滑动,或牛顿动力学中的质量运动在保守力场中通过粘性介质。具有动量的梯度下降记住每次迭代时的解更新,并将下一次更新确定为梯度和前一次更新的线性组合。
对于无约束二次极小化,重球法的理论收敛速度界与最优共轭梯度法的理论收敛速度界渐近相同。
该技术用于随机梯度下降,并作为用于训练人工神经网络的反向传播算法的扩展。