导航:首页 > 源码编译 > dijkstra算法图解

dijkstra算法图解

发布时间:2022-05-04 21:04:10

1. Dijkstra算法流程图

定义G=(V,E),定义集合S存放已经找到最短路径的顶点,集合T存放当前还未找到最短路径的顶点,即有T=V-S

Dijkstra算法描述如下:

(1) 假设用带权的邻接矩阵edges来表示带权有向图,edges[i][j]表示弧<Vi, Vj>上的权值。若<Vi, Vj>不存在则置edges[i][j]=∞(计算机上用一个允许的最大值代替)。S为已经找到的从Vs出发的最短路径的终点集合,它初始化为空集。那么,从Vs出发到图上其余各顶点(终点)Vi可能达到的最短路径长度的初值为:D[i]=deges[s][i] Vi∈V

(2) 选择Vj,使得D[j]=Min{D[i]|Vi∈V-S},Vj就是当前求得的一条从Vs出发的最短路径的终点。令S=S∪{Vj}

(3) 修改从Vs出发到集合V-S上任一顶点Vk可达的最短路径长度。如果D[j]+edges[j][k]<D[k]则修改D[k]为D[k]=D[j]+edges[j][k]

重复操作(2)(3)共n-1次。由此求得从Vs到图上其余各顶点的最短路径。

2. 利用Dijkstra算法求下图中从顶点1到其它各顶点间的最短路径,按下面表格形式

v1到v2:10为最短路径;

v1到v3:7为最短路径;

v1到v4:8为最短路径;

v1到v5:v1-> v2 -> v5 =10+6= 16;v1v3v5=7+9=16;v1v4v6v5=8+5+2=15; 15为最短路径;

v1到v6:v1v2v3v6=10+2+9=21;v1v3v6=7+9=16;v1v4v6=8+5=13;13为最短路径;

v1到v7:v1v2v5v7=10+6+20=36;v1v3v5v7=7+9+20=36;v1v3v6v7=7+9+30=46;

v1v4v6v7=8+5+30=42;v1v4v6v5v7=35;35为最短路径

Dijkstra:

求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E)。源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2)。若是斐波那契堆作优先队列的话,算法时间复杂度,则为O(V*lgV + E)。

以上内容参考:网络-最短路径算法

3. 迪杰斯特拉算法的算法思想

按路径长度递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
(反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

4. dijkstra算法是什么

Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。

其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性。

不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离不会改变的性质。

举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。Dijkstra算法可以用来找到两个城市之间的最短路径。

Dijkstra算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。我们以E所有边的集合,而边的权重则由权重函数w: E→[0,∞]定义。

因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。边的花费可以想象成两个顶点之间的距离。任两点间路径的花费值,就是该路径上所有边的花费值总和。

已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e.最短路径)。这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。

5. dijkstra算法

楼上正解,你找个图自己用此算法实践一下就知道了,从A点出发,发现离A最近的点是B点,那么我们就已经认为A到B的最短距离就是AB了,如果有负数,就指不定冒出个C点,AC+CB<AB;或者冒出个DE为很大的负值,AC+CD+DE+EF+FB<AB;等等诸如此类的情况。
简单说来,你驾车从家出发到某地沿某条路只需经过一个收费站,但是远在外省某地有个站不但不收你的费,你去了还会给你个千八百万的欢迎光临费,你能说你直接沿着这条路去某地是最省费用的?不计时间成本,绕到外省那个给你钱的地方,再绕回到你的目的地,还能赚钱呢。
而且一般权值为负的图研究也比较少。有些带负权的图,某些点间还没有最小距离呢。中间出个带某条负权很大的边的环圈,绕此一圈所经过的距离反而减少了,那就一直在此圈上绕啊绕啊绕到负的足够大溢出为止。
当然考虑各种自己随便假设出来的变种问题也是很有趣的。比如说边带有多个权值对应多次经过改变的消费,上面的问题有可能变成有解的。话说那个站会后悔,第二次经过它会收回100万,第三次经过收回250万,这样的话你只需要经过一次就够了,问题也是有解的。再比如说对于多权重图,从A点出发经过B点到达C点的最短路线,就不是简单的AB最短路线+BC最短路线了,说不定两者有重合边,第二次经过来个天价就傻眼了。其实这种图貌似应该可以转化成单权重图的,我直觉估计啊,刚随便想出这个问题,还没去思考这个问题的解^_^

6. Dijkstrath算法是什么如何用Dijkstrath算法求计算机网络拓扑图的最短路径

Dijkstra算法是典型 的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
迪杰斯特拉(Dijkstra)算法思想
按路径长度递增次序产生最短路径算法:

把V分成两组:

(1)S:已求出最短路径的顶点的集合

(2)V-S=T:尚未确定最短路径的顶点集合

将T中顶点按最短路径递增的次序加入到S中,

保证:(1)从源点V0到S中各顶点的最短路径长度都不大于

从V0到T中任何顶点的最短路径长度

(2)每个顶点对应一个距离值

S中顶点:从V0到此顶点的最短路径长度

T中顶点:从V0到此顶点的只包括S中顶点作中间

顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的

直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和

(反证法可证)

求最短路径步骤
算法步骤如下:

1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值

若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值

若不存在<V0,Vi>,d(V0,Vi)为∝

2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的

距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

7. dijkstra算法有哪些

迪杰斯特拉算法用来解决从顶点v0出发到其余顶点的最短路径,该算法按照最短路径长度递增的顺序产生所以最短路径。

对于图G=(V,E),将图中的顶点分成两组:

第一组S:已求出的最短路径的终点集合(开始为{v0})。

第二组V-S:尚未求出最短路径的终点集合(开始为V-{v0}的全部结点)。

算法将按最短路径长度的递增顺序逐个将第二组的顶点加入到第一组中,直到所有顶点都被加入到第一组顶点集S为止。

(7)dijkstra算法图解扩展阅读:

从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,此时完成一个顶点,需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。 然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

8. 实现Dijkstra算法,并用图形化的方式显示出该算法的运算过程。

一般数据结构书上都会有
const int NumVertices=10 //假定最大10个顶点

class Gragh 图类定义(邻接矩阵表示)
{
private:
float Edge[NumVertices][NumVertices];
//邻接矩阵表示
float dist[NumVertices];
//顶点0到其他个顶点最短路径长度
int path[NumVertices];
//最短路径上该顶点的前一个顶点号,
int S[Numvertices];
/*已求得最短路径上顶点的顶点号,=1表示已经得 最短路径=0表示为未求得最短路径*/
public:
void Shortestpath(int ,int );//Dijkstra算法
int choose(int);
};

void Graph::Shortestpath(int n,int v)
{ //n是图的顶点数,v为所要求的顶点
for(int i=0,i<n;i++)
{//dist,path,S数组初始化
dist[i]=Edge[v][i];
S[i]=0;
if(i!=v&&dist[i]<MAXNUM)path[i]=v;
else path[i]=-1;
}
S[v]=1;dist[v]=0//v是起始顶点
for(i=0;i<n-1;i++)
{//从v确定n-1条路径
float min=MAXNUM;
int u=v;
for(int j=0;j<n;j++)
{//选择不在S中有最短路径的顶点u
if(!S[j]&&dist[j]<min)
{
u=j;min=dist[j];
}
S[u]=1;//顶点u加入S集合中
for(int w=0;w<n;w++)
if(!S[w]&&Edge[u][w]<MAXNUM&&
dist[u]+Edge[u][w]<dist[w])
{/*修改不在S中的其他顶点的当前最短路径*/
dist[w]=dist[u]+Edge[u][w];
path[w]=u;
}
}
}

9. 解释一下dijkstra算法这个计算过程的意思 怎么算的

最近也看到这个算法,不过主要是通过C语言介绍的,不太一样,但基本思想差不多。下面只是我个人的看法不一定准确。
Dijkstra算法主要解决指定某点(源点)到其他顶点的最短路径问题。
基本思想:每次找到离源点最近的顶点,然后以该顶点为中心(过渡顶点),最终找到源点到其余顶点的最短路。

t=1:令源点(v_0)的标号为永久标号(0,λ)(右上角加点), 其他为临时(+无穷,λ). 就是说v_0到v_0的距离是0,其他顶点到v_0的距离为+无穷。t=1时,例5.3上面的步骤(2)(3)并不能体现

t=2:第1步v_0(k=0)获得永久标号,记L_j为顶点标号当前的最短距离(比如v_0标号(0,λ)中L_0=0), 边(v_k,v_j)的权w_kj. 步骤(2)最关键,若v_0与v_j之间存在边,则比较L_k+w_kj与L_j, 而L_k+w_kj=L_0+w_0j<L_j=+无穷。
这里只有v_1,v_2与v_0存在边,所以当j=1,2时修改标号, 标号分别为(L_1, v_0)=(1, v_0), (L_2, v_0)=(4, v_0), 其他不变。步骤(3)比较所有临时标号中L_j最小的顶点, 这里L_1=1最小,v_1获得永久标号(右上角加点)。

t=3: 第2步中v_1获得永久标号(k=1), 同第2步一样,通过例5.3上面的步骤(2)(3),得到永久标号。 步骤(2),若v_1与v_j(j=2,3,4,5(除去获得永久标号的顶点))之间存在边,则比较L_1+w_1j与L_j。这里v_1与v_2,v_3,v_,4存在边,
对于v_2, L_1+w_12=1+2=3<L_2=4, 把v_2标号修改为(L_1+w_12, v_1)=(3, v_1);
对于v_3, L_1+w_13=1+7=8<L_3=+无穷, 把v_3标号修改为(L_1+w_13, v_1)=(8, v_1);
对于v_4, L_1+w_14=1+5=6<L_4=+无穷, 把v_4标号修改为(L_1+w_14, v_1)=(6, v_1);
v_5与v_1不存在边,标号不变。步骤(3), 找这些标号L_j最小的顶点,这里v_2标号最小

t=4: k=2, 与v_2存在边的未获得永久标号的顶点只有v_4, 比较L_2+w_24=3+1=4<L_4=6, 把v_4标号修改为(L_2+w_24, v_2)=(4, v_2); 其他不变。步骤(3), L_4=4最小。

t=5: k=4, 同理先找v_4邻接顶点,比较,修改标号,找L_j最小
t=6: 同理

啰嗦的这么多,其实步骤(2)是关键,就是通过比较更新最短路径,右上角标点的就是距离源点最近的顶点,之后每一步就添加一个新的”源点”,再找其他顶点与它的最短距离。

迪杰斯特拉算法(Dijkstra)(网络):
http://ke..com/link?url=gc_mamV4z7tpxwqju6BoqxVOZ_josbPNcGKtLYJ5GJsJT6U28koc_#4
里面有个动图,更形象地说明了该算法的过程。(其中每次标注的一个红色顶点out就和你的这本书中获得永久标号是相似的)

阅读全文

与dijkstra算法图解相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:578
python员工信息登记表 浏览:376
高中美术pdf 浏览:160
java实现排列 浏览:512
javavector的用法 浏览:981
osi实现加密的三层 浏览:231
大众宝来原厂中控如何安装app 浏览:913
linux内核根文件系统 浏览:242
3d的命令面板不见了 浏览:525
武汉理工大学服务器ip地址 浏览:148
亚马逊云服务器登录 浏览:524
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:929
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:250
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348