导航:首页 > 源码编译 > 算法的三要素数据

算法的三要素数据

发布时间:2022-05-05 01:28:16

A. 程序设计过程中的三要素

程序设计过程中的三要素分别是算法、数据结构和程序设计方法学。程序设计是给出解决特定问题程序的过程,是软件构造活动中的重要组成部分。程序设计往往以某种程序设计语言为工具,给出这种语言下的程序。程序设计过程应当包括分析、设计、编码、测试、排错等不同阶段。

程序设计是指设计、编制、调试程序的方法和过程。它是目标明确的智力活动。由于程序是软件的本体,软件的质量主要通过程序的质量来体现,在软件研究中,程序设计的工作非常重要,内容涉及到有关的基本概念、工具、方法以及方法学等。程序设计通常分为问题建摸,算法设计,编写代码,编译调试和整理并写出文档资料五个阶段。

(1)算法的三要素数据扩展阅读:

程序设计的基本概念有程序、数据、子程序、子例程、协同例程、模块以及顺序性、并发性、并行性、和分布性等。程序是程序设计中最为基本的概念,子程序和协同例程都是为了便于进行程序设计而建立的程序设计基本单位,顺序性、并发性、并行性和分布性反映程序的内在特性。 程序设计规范是进行程序设计的具体规定。程序设计是软件开发工作的重要部分,而软件开发是工程性的工作,所以要有规范。语言影响程序设计的功效以及软件的可靠性、易读性和易维护性。专用程序为软件人员提供合适的环境,便于进行程序设计工作。

B. 数据结构的三要素是什么

一、数据的逻辑结构

指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后间关系,而与他们在计算机中的存储位置无关。逻辑结构包括:

1、集合:数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;

2、线性结构:数据结构中的元素存在一对一的相互关系;

3、树形结构:数据结构中的元素存在一对多的相互关系;

4、图形结构:数据结构中的元素存在多对多的相互关系。

二、数据的物理结构

指数据的逻辑结构在计算机存储空间的存放形式。

数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成一种或多种存储结构。

数据元素的机内表示(映像方法): 用二进制位(bit)的位串表示数据元素。通常称这种位串为节点(node)。当数据元素有若干个数据项组成时,位串中与各个数据项对应的子位串称为数据域(data field)。因此,节点是数据元素的机内表示(或机内映像)。

关系的机内表示(映像方法):数据元素之间的关系的机内表示可以分为顺序映像和非顺序映像,常用两种存储结构:

顺序存储结构和链式存储结构。顺序映像借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。非顺序映像借助指示元素存储位置的指针(pointer)来表示数据元素之间的逻辑关系。

三、数据存储结构

数据的逻辑结构在计算机存储空间中的存放形式称为数据的物理结构(也称为存储结构)。一般来说,一种数据结构的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序存储、链式存储、索引存储和哈希存储等。

数据的顺序存储结构的特点是:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系;非顺序存储的特点是:借助指示元素存储地址的指针表示数据元素之间的逻辑关系。

(2)算法的三要素数据扩展阅读

在程序中,堆用于动态分配和释放程序所使用的对象。在以下情况中调用堆操作:

1、事先不知道程序所需对象的数量和大小。

2、对象太大,不适合使用堆栈分配器。

堆使用运行期间分配给代码和堆栈以外的部分内存。

传统上,操作系统和运行时库随附了堆实现。当进程开始时,操作系统创建称为进程堆的默认堆。如果没有使用其他堆,则使用进程堆分配块。语言运行时库也可在一个进程内创建单独的堆。(例如,C 运行时库创建自己的堆。)

除这些专用堆外,应用程序或许多加载的动态链接库 (DLL) 之一也可以创建并使用单独的堆。Win32 提供了一组丰富的API用于创建和使用专用堆。有关堆函数的优秀教程,请参阅 MSDN 平台 SDK 节点。

当应用程序或DLL创建专用堆时,这些堆驻留于进程空间中并且在进程范围内是可访问的。某一给定堆分配的任何数据应为同一堆所释放。(从一个堆分配并释放给另一个堆没有意义。)

在所有虚拟内存系统中,堆位于操作系统的虚拟内存管理器之上。语言运行时堆也驻留在虚拟内存之上。某些情况下,这些堆在操作系统堆的上层,但语言运行时堆通过分配大的块来执行自己的内存管理。绕开操作系统堆来使用虚拟内存函数可使堆更好地分配和使用块。

典型的堆实现由前端分配器和后端分配器组成。前端分配器维护固定大小块的自由列表。当堆收到分配调用后,它尝试从前端列表中查找自由块。如果此操作失败,则堆将被迫从后端(保留和提交虚拟内存)分配一个大块来满足请求。通常的实现具有每个块分配的开销,这花费了执行周期,也减少了可用存储区。

Windows NT的实现(Windows NT 4.0 版及更高版本)使用 127 个从 8 到 1,024 字节不等的 8 字节对齐块的自由列表和 1 个混合列表。混合列表(自由列表【0】)包含大小超过 1,024 字节的块。自由列表包含在双向链接表中链接在一起的对象。默认情况下,进程堆执行合并操作。(合并操作是组合相邻的自由块以生成更大的块的操作。)合并操作花费了额外的周期,但减少了堆块的内部碎片。

单个全局锁可防止多线程同时使用堆。此锁主要用于保护堆数据结构不受多线程的任意访问。当堆操作过于频繁时,此锁会对性能造成负面影响。

参考资料来源:网络-数据结构

参考资料来源:网络-堆

C. 人工智能三大要素有哪些

人工智能产业技术的:算法、计算能力、信息大数据融合,成为人工智能发展最基本、最基础的基本三要素。

收集的大量数据,数据是驱动人工智能取得更好的识别率和精准度的核心因素;

落实在产品应用上,算法可表现为:视频结构化(对视频数据的识别、分类、提取和分析)、生物识别(人脸、虹膜、指纹、人脸识别等)、物体特征识别(不同物体识别,不同物体代表性物体识别,如:车牌识别系统)等几大类。

互联网时代大数据迎来爆发式增长,全球的数据总量都飞快的增长,数据高速积累的同时现有算力根本无法匹配。

传统架构基础硬件的计算力也不能满足大量增长的多数据信息计算的同时,更无法满足人工智能相关的高性能计算需求,多PU硬件组合+强大的多功能并行处理计算能力,成为当下人工智能必备的基本平台。

数据总量飞速的增长、积累的同时,信息数据的收集、整理与融合成为了人工智能深度学习和算法升级与服务应用落地的根本,大数据与融合计算成为了人工智能发展必然的关键。


(3)算法的三要素数据扩展阅读:

人工智能需要从大量数据中进行学习,丰富的数据集是其中非常重要的因素,丰富的数据积累,给深度学习创造更加丰富的数据训练集,是人工智能算法与深度学习训练必备的、不可或缺的良好的基础。

像战胜人类的 AlphaGo,其学习过程的核心数据是来自互联网的3000万例棋谱,而这些数据的积累是历经了十多年互联网行业的发展成铸就的。可见,所有基于深度学习算法的人工智能,均需具备深厚的数据信息资源和专项数据积累,才能取得AI服务应用的突破性进展。

离开了基础数据,机器的智慧仿生是不可能实现的。广东傲智在公司成立前,就已经具备行业应用强大深厚的大数据方面的基础数据信息,这也是广东傲智能在算法深度开发、深度学习和计算力平台研发方面发展迅速又有AI针对性的核心竞争力。

D. 人工智能需要什么基础

人工智能(AI)基础:

1、核心三要素——算力、算法、数据(三大基石):

算法、算力、数据作为人工智能(AI)核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态。随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新。让人类社会从信息化进入智能化。

2、技术基础:

(1)文艺复兴后的人工神经网络。

人工神经网络是一种仿造神经元运作的函数演算,能接受外界资讯输入的刺激,且根据不同刺激影响的权重转换成输出的反应,或用以改变内部函数的权重结构,以适应不同环境的数学模型。

(2)靠巨量数据运作的机器学习。

科学家发现,要让机器有智慧,并不一定要真正赋予它思辩能力,可以大量阅读、储存资料并具有分辨的能力,就足以帮助人类工作。

(3)人工智能的重要应用:自然语言处理。

自然语言处理的研究,是要让机器“理解”人类的语言,是人工智能领域里的其中一项重要分支。

自然语言处理可先简单理解分为进、出计算机等两种:

其一是从人类到电脑──让电脑把人类的语言转换成程式可以处理的型式;

其二是从电脑回馈到人──把电脑所演算的成果转换成人类可以理解的语言表达出来。

E. 算法的三要素不包括以下()A.明确性B.有限性C.有序性D.模糊

算法的三要素是有序性,有限性,明确性
故选:D.

F. 数据模型的作用及三要素是什么

数据模型三要素是数据结构、数据操作、数据约束。

1、数据结构

是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合,即带“结构”的数据元素的集合。。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

2、数据操作

数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。它是操作算符的集合,包括若干操作和推理规则,用以对目标类型的有效实例所组成的数据库进行操作。

3、数据约束

数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。它是完整性规则的集合,用以限定符合数据模型的数据库状态,以及状态的变化。

(6)算法的三要素数据扩展阅读:

数据模型按不同的应用层次分成三种类型:

1、概念模型

一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等。

2、逻辑模型

一种面向数据库系统的模型,具体的DBMS所支持的数据模型。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。

3、物理模型

一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构。每一种逻辑数据模型在实现时都有其对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作由系统自动完成。

G. 算法的要素是什么算法的特征是什么

一、算法的要素包括:

1、数据对象的操作和操作:计算机可以执行的基本操作以指令的形式描述。

2、算法的控制结构:算法的功能结构不仅取决于所选的操作,还取决于操作之间的执行顺序。

二、算法的特征如下:

1、有穷性:算法的有穷性意味着算法在执行有限的步骤之后必须能够终止。

2、确切性:算法的每一步都必须确切定义。

3、输入项:一个算法有0个或多个输入来描述操作对象的初始条件。所谓的零输入是指由算法本身决定的初始条件。

4、输出项:一个算法有一个或多个输出来反映处理输入数据的结果。没有输出的算法毫无意义。

5、可行性:算法中执行的任何计算步骤都可以分解为基本的可执行操作步骤,即每个计算步骤都可以在有限的时间内完成。

(7)算法的三要素数据扩展阅读:

算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。

随着计算机的发展,算法在计算机方面已有广泛的发展及应用,如用随机森林算法,来进行头部姿势的估计,用遗传算法来解决弹药装载问题,信息加密算法在网络传输中的应用,并行算法在数据挖掘中的应用等。

H. 算法的评价指标有哪些

时间复杂度和空间复杂度。

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

T(n)=Ο(f(n))

因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

空间复杂度记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

(8)算法的三要素数据扩展阅读:

算法的方法:

1、递推法

递推是序列计算机中的一种常用算法。它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。

2、递归法

程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

注意:

(1) 递归就是在过程或函数里调用自身.

(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

I. 算法的要素有哪些

算法包含的要素:

一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:

1、算术运算:加减乘除等运算。

2、逻辑运算:或、且、非等运算。

3、关系运算:大于、小于、等于、不等于等运算。

4、数据传输:输入、输出、赋值等运算。

二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。

算法的五个特性分别是:

有穷性、确切性、输入项、输出项、可行性。

1、有穷性

算法的有穷性是指算法必须能在执行有限个步骤之后终止。

2、确切性

算法的每一步骤必须有确切的定义。

3、输入项

一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。

4、输出项

一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

5、可行性

算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成(也称之为有效性)。

J. 算法包含哪些要素

算法包含的要素:

一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:

1.算术运算:加减乘除等运算

2.逻辑运算:或、且、非等运算

3.关系运算:大于、小于、等于、不等于等运算

4.数据传输:输入、输出、赋值等运算

二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。

(10)算法的三要素数据扩展阅读:

算法的五个特性分别是:有穷性、确切性、输入项、输出项、可行性。

1、有穷性

算法的有穷性是指算法必须能在执行有限个步骤之后终止;

2、确切性

算法的每一步骤必须有确切的定义;

3、输入项

一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;

4、输出项

一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

5、可行性

算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成(也称之为有效性)。

阅读全文

与算法的三要素数据相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:578
python员工信息登记表 浏览:376
高中美术pdf 浏览:160
java实现排列 浏览:512
javavector的用法 浏览:981
osi实现加密的三层 浏览:231
大众宝来原厂中控如何安装app 浏览:913
linux内核根文件系统 浏览:242
3d的命令面板不见了 浏览:525
武汉理工大学服务器ip地址 浏览:148
亚马逊云服务器登录 浏览:524
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:929
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:250
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348