❶ 条件变量的创建
条件变量和互斥锁一样,都有静态和动态两种创建方式,静态方式使用PTHREAD_COND_INITIALIZER常量进行初始化,如下:
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
动态方式调用pthread_cond_init()函数,API定义如下:
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr)
尽管POSIX标准中为条件变量定义了属性,但在linuxThreads中没有实现,因此cond_attr值通常为NULL,且被忽略。
❷ 怎么使用pthread
一 概述
Pthread是一套通用的线程库, 它广泛的被各种Unix所支持, 是由POSIX提出的. 因此, 它具有很好的可移植性.
例1:
/* ------ test.c ------- */
#include <pthread.h>
void *pp(void *arg)
{
printf("%s\n", (char *)arg);
sleep(2);
}
return NULL;
}
main()
{
printf("I am main thread\n");
sleep(1);
}
}
执行:
gcc test.c -lpthread
./a.out
输出:
I am main thread
hello world
I am main thread
hello world
............
二 返回值
也应该看到了, 每一个线程的返回值是void *.
有两种方法返回:
1 return pointer;
2 pthread_exit(pointer);
这两种方法是一样的.
那么, 其他的线程是如何得到这个返回值的呢?
用这个函数:
int pthread_join(pthread_t TH, void **thread_RETURN);
一个线程有两种状态, joinable 即系统保留线程的返回值, 直到有另外一个线程将它取走. detach系统不保留返回值.
下面的函数用于detach:
int pthread_detach (pthread_t TH);
pthread_t pthread_self(); 可以返回自己的id. 通常, 我们用下列的语句来detach自己:
pthread_detach(pthread_self());
三 Mutex
Mutex用于解决互斥问题. 一个Mutex是一个互斥装置, 用于保护临界区和共享内存. 它有两种状态locked, unlocked. 它不能同时被两个线程所拥有.
下面的函数用于处理Mutex:
初始化一个Mutex
int pthread_mutex_init (pthread_mutex_t *MUTEX, const pthread_mutexattr_t *MUTEXATTR);
锁定一个Mutex
int pthread_mutex_lock (pthread_mutex_t *mutex));
试图锁定一个Mutex
int pthread_mutex_trylock (pthread_mutex_t *MUTEX);
结锁一个Mutex
int pthread_mutex_unlock (pthread_mutex_t *MUTEX);
销毁一个Mutext
int pthread_mutex_destroy (pthread_mutex_t *MUTEX);
它的锁一共有三种: "fast", "recursive", or "error checking"
进行lock操作时:
如处于unlock状态, lock它, 即排斥占有。
在被其他线程lock的时候,
挂起当前线程, 直到被其他线程unlock
在已经被自己lock的时候,
"fast" 挂起当前线程.
"resursive" 成功并立刻返回当前被锁定的次数
"error checking" 立刻返回EDEADLK
进行unlock操作时:
解锁.
"fast" 唤醒第一个被锁定的线程
"recursive" 减少lock数(这个数仅仅是被自己lock的, 不关其它线程的) 当lock数等于零的
时候, 才被unlock并唤醒第一个被锁定的线程.
"error check" 会检查是不是自己lock的, 如果不是返回EPERM. 如果是唤 醒第一个被锁定的线程,
通常, 我们用一些静态变量来初始化mutex.
"fast" `PTHREAD_MUTEX_INITIALIZER'
"recursive" `PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP'
"error check" `PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP'
注意: _NP 表示no portable不可移植
例如:
// "fast" type mutex
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
... ...
pthread_mutext_lock(&mutex);
fwrite(buffer, 1, strlen(buffer), file);
pthread_mutex_unlock(&mutex);
... ...
四 Condition Variable (条件变量)
也是一种用于同步的device. 允许一个进程将自己挂起等待一个条件变量被改变状态.
有下列几个函数:
int pthread_cond_init (pthread_cond_t *COND,pthread_condattr_t *cond_ATTR);
int pthread_cond_signal (pthread_cond_t *COND);
int pthread_cond_broadcast (pthread_cond_t *COND);
int pthread_cond_wait (pthread_cond_t *COND, pthread_mutex_t *MUTEX);
int pthread_cond_timedwait (pthread_cond_t *COND, pthread_mutex_t *MUTEX, const struct timespec *ABSTIME);
int pthread_cond_destroy (pthread_cond_t *COND);
我想看看名字就可以知道它们的用途了. 通常我们也使用静态变量来初始化一个条件变量.
Example:
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_cond_signal 用于唤醒一个被锁定的线程.
pthread_cond_broadcast 用于唤醒所有被锁定的线程.
pthread_cond_wait 用于等待.
为了解决竞争问题(即一个线程刚要去wait而另一个线程已经signal了), 它要与一个mutex连用.
看一看下面的例子:
int x,y;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
//Waiting until X is greater than Y is performed as follows:
pthread_mutex_lock(&mut);
/**//* operate on x and y */
pthread_mutex_unlock(&mut);
pthread_cond_wait的执行过程如下:
1. 首先, 它unlock the mutex, then 挂起当前的线程.
2. 当被唤醒的时候, 它会lock the mutex.
这样就保证了这是一个临界区.
五 Thread-Specific Data (TSD)
说白了就是线程中使用的静态变量. 大家可以很容易的理解为什么使用静态变量函数不是线程安全的(也就是它们一定要很小心的在线程中使用).
而使用静态变量又是很方便的, 这就产生了 thread-specific data. 可以把它理解为一个指针数组, 但对于每个线程来说是唯一的.
Example:
int func()
{
char *p;
p = strp(thread-specific-data[1]);
... ...
}
void *pthread-1(void *arg)
{
... ...
func()
... ...
}
void *pthread-2(void *arg)
{
... ...
func()
... ...
}
不同的线程调用func产生的结果是不同的. 这只是个例子.
int pthread_key_create(pthread_key_t *KEY, void (*destr_function) (void *));
int pthread_key_delete(pthread_key_t KEY);
int pthread_setspecific(pthread_key_t KEY, const void *POINTER);
void * pthread_getspecific(pthread_key_t KEY);
TSD可以看成是一个void *的数组.
注意: pthread_key_delete只是释放key占用的空间, 你仍然需要释放那个void *.
为了加深你的理解, 看一看下面的例子吧:
/* Key for the thread-specific buffer */
static pthread_key_t buffer_key;
/* Once-only initialisation of the key */
static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;
{
pthread_once(&buffer_key_once, buffer_key_alloc);
pthread_setspecific(buffer_key, malloc(100));
}
{
return (char *) pthread_getspecific(buffer_key);
}
{
pthread_key_create(&buffer_key, buffer_destroy);
}
{
free(buf);
}
❸ pthread_cond_wait的介绍
条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待条件变量的条件成立而挂起;另一个线程使条件成立(给出条件成立信号)。为了防止竞争,条件变量的使用总是和一个互斥锁结合在一起。
❹ pthread.h不属于linux内核,但是为什么很多内核源码中include了pthread.h
加入头文件,是声明这个函数是被定义过的,就如同要使用stdio.h里的函数一样,没有stdio.h头文件,stdio.h里的函数一样不可用;使用#include<pthread.h>后,里面的函数就可以使用了,但是在编译的时候就需要加上"-lpthread",以方便程序去寻找lpthread.so共享库,例如:gcc abc.c -o abc -lpthread
❺ 既然pthread可以用mutex来lock/unlock,为什么还要引入pthread
读写锁有现成的,不过也可以自己用mutex实现一个,条件变量是一种同步机制, 比如不用忙等:
#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
❻ pthread 条件变量用在什么地方
使用条件变量最大的好处是可以避免忙等。相当与多线程中的信号。 条件变量是线程中的东西就是等待某一条件的发生和信号一样 以下是说明 ,条件变量使我们可以睡眠等待某种条件出现。 条件变量是利用线程间共享的全局变量进行同步的一种机制
❼ pthread 条件变量 调度
broadcast唤醒全部,signal唤醒一个,默认的调度看不了
❽ 嵌入式系统多线程编程中pthread_create、pthread_cond_wait等函数的源代码在哪儿找
差别很大,都不一样。
此外wince快要淘汰了,不要想了。
我可以帮助你,你先设置我最佳答案后,我网络Hii教你。
❾ 对libpthread.so反汇编后怎么查看相应的源码
对libpthread.so反汇编后怎么查看相应的源码
1:先找出libpthread.so.0在那用whereis 命令
# whereis libphread.so.0
2:再用rpm -q查询
#rpm -qf libpthread.so.0的路径
3:知道属于哪个RPM包之后,挂载你的ISO 文件吧!假设你的ISO文件在/mnt/WinE下,准备挂载到/mnt/iso下
#mount -t iso9660 /mnt/WinE/xxxx.iso /mnt/iso/
4:去找那个RPM包吧,安装就OK了!
❿ 如何使用 linux下多线程中条件变量
使用条件变量最大的好处是可以避免忙等。相当与多线程中的信号。
条件变量是线程中的东西就是等待某一条件的发生和信号一样
以下是说明
,条件变量使我们可以睡眠等待某种条件出现。
条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待”条件变量的条件成立”而挂起;另一个线程使”条件成立”(给出条件成立信号)。为了防止竞争,条件变量的使用总是和一个互斥锁结合在一起。
条件变量类型为pthread_cond_t
创建和注销
条件变量和互斥锁一样,都有静态动态两种创建方式,静态方式使用PTHREAD_COND_INITIALIZER常量,如下:
pthread_cond_t cond=PTHREAD_COND_INITIALIZER
动态方式调用pthread_cond_init()函数,API定义如下:
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr)
尽管POSIX标准中为条件变量定义了属性,但在LinuxThreads中没有实现,因此cond_attr值通常为NULL,且被忽略。
注销一个条件变量需要调用pthread_cond_destroy(),只有在没有线程在该条件变量上等待的时候才能注销这个条件变量,否则返回EBUSY。API定义如下:
int pthread_cond_destroy(pthread_cond_t *cond)
等待和激发
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
等待条件有两种方式:无条件等待pthread_cond_wait()和计时等待pthread_cond_timedwait(),其中计时等待方式如果在给定时刻前条件没有满足,则返回ETIMEOUT,结束等待,其中abstime以与time()系统调用相同意义的绝对时间形式出现,0表示格林尼治时间1970年1月1日0时0分0秒。
使用绝对时间而非相对时间的优点是。如果函数提前返回(很可能因为捕获了一个信号,)
无论哪种等待方式,都必须和一个互斥锁配合,以防止多个线程同时请求pthread_cond_wait()(或pthread_cond_timedwait(),下同)的竞争条件(Race Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本线程加锁(pthread_mutex_lock()),而在更新条件等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()前的加锁动作对应。
激发条件有两种形式,pthread_cond_signal()激活一个等待该条件的线程,存在多个等待线程时按入队顺序激活其中一个;而pthread_cond_broadcast()则激活所有等待线程。
其他
pthread_cond_wait()和pthread_cond_timedwait()都被实现为取消点,因此,在该处等待的线程将立即重新运行,在重新锁定mutex后离开pthread_cond_wait(),然后执行取消动作。也就是说如果pthread_cond_wait()被取消,mutex是保持锁定状态的,因而需要定义退出回调函数来为其解锁。