⑴ 怎样成为算法工程师
成为算法工程师的要求:
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
目前国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。
在计算机音视频和图形图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Rection),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。
在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。
另外数据挖掘、互联网搜索算法也成为当今的热门方向。
算法工程师逐渐往人工智能方向发展。
⑵ 算法工程师应该具备哪些工程能力
作者 | 木东居士
来源 | Data_Engineering
最近看了 Milter 的《算法工程师究竟需要哪些工程能力》这篇文章,有所感想,因此也写一篇关于算法工程师的技术能力的问题,和大家分享一下居士关于算法工程师的技术能力的观点。
对于一名优秀的算法工程师,他(她)要具备的不仅仅是出色的技术能力,也要有很深的业务理解能力和对外沟通能力,总之,要求可以很高!
但是,从职责能力的划分上来讲,算法工程师首先是一名工程师,因此本文主要从工程能力要求上进行一些探讨。
开始之前先放一份思维导图,这将是这篇文章要分享的核心内容:
工程能力概览
算法工程师,从名字上我们就能看出,一名算法工程师首先应该具备算法能力和工程能力,我们可以认为这是基础的技术能力。由于现在开源技术的普及,Sklearn、Tensorflow 和 Spark ML 基本已经成为大部分算法工程师标配的工具库了,因此,熟练的调包能力也是决定了一名算法工程师能否快速实现需求。
其次,在真实的生产环境中,算法的落地会遇到各种各样的业务场景和数据环境,这也要求算法工程师需要具备Pipeline 构建能力,将整个生产环境中的数据流和模型打通。同时,在生产环境中,会出现各种“疑难杂症”等待你去解释,比如说为什么实验效果特别差?为什么模型效果不稳定?这就要要求算法工程师需要具备一定的数据分析能力。
很多时候,你会发现,你用在数据分析和Pipeline构建上的精力可能占据了你8成以上的工作内容。
当你具备了上面的能力时,你已经可以称自己是一名算法工程师了。此时,你可以去对着数据分析小得瑟一下:“你看,我能构建整个模型的Pipeline,你却只能拿到别人提供的数据后调调包吧。“或者,你也可以去找开发得瑟:”你看,我懂了很多算法哦,你就只会写代码吧。“
得瑟完之后,我们还是回归正题,算法工程师只具备这样能力是否已经够了?答案当然是不够的。由于不同公司的团队成熟度不同,工具化和流程的成熟度都不同,这就会对算法工程师有不同的要求,比如说模型发布能力和报表开发能力,当然也会有一些其它能力,虽然可能不是特别重要,但是当这些工作没人帮你做的时候,算法工程师可能依然要承担起这些工作内容,比如说灰度测试的能力、负载均衡的能力等等。
将上面的内容整理后,就是这样一份思维导图了(一张图多看几篇更能加深印象,因此我再贴出来一遍)
工程能力详解
一、基础能力
算法能力
算法能力就不多说了,算法工程师的基本能力要求,不懂算法对于一名算法工程师来讲是不太合理的。这里居士把统计学的内容也放进来了。
编程能力
编程能力主要分为两部分:
Python、C++、Java这类编程语言,这三种也是算法工程师需要了解的主流编程语言,一般掌握其一就够,看不同公司。 Sql就是很通用的能力了,Sql也是一门编程语言,而是是数据处理最常用的语言! 很好用。 大数据场景下,要了解Hive Sql。调包能力
大家虽然会调侃调包侠,但是说实话,能调包调的很溜的人,也是不多的,比如说现在让你自己用tensorflow构建一个复杂网络,不能google,你能写出来吗?能记清楚用法吗?
Sklearn Tensorflow Spark ML二、核心能力
Pipeline 构建能力
Pipeline构建能力,这里想表达的更多的是整个数据流的构建能力,数据从日志->特征->模型训练->反馈,这一个链条能否完成的能力,这里面会有很多难题需要克服。比如说:
实时和离线模型一致性问题? 离线和实时特征一致性问题? 实时特征构建的问题? 数据延迟的问题?很多时候,模型发布之类的工作是可以由其他同学支持完成,但是数据流这种问题更多的是需要算法工程师来解决的。
数据分析能力
这里的数据分析能力不是指商业分析或者业务分析,更多的是指特征分析、算法效果分析和各种异常问题定位分析的能力。
很多时候,两个算法工程师能力水平的强弱从数据分析能力上也能窥得一二。
三、辅助技术能力
辅助的技术能力是指,你会不会的影响不会特别大,但是也都是有用的能力,特别是不同公司的发展情况不同,很可能会出现一个算法工程师既要做数据接入、又要做数据清洗、还要做算法平台
也要搞前端、还要负责模型上线、系统运维。
这里就不再细讲了。
思考一
聊一下对技术能力、工程能力和数据分析的思考。
居士个人的理解,技术能力更多的是偏向于一个一个的技术点,而工程能力更多就是在一个团队中将项目做好的能力。很多算法出身的工程能力不行,那么他做的单纯的一个模型是无法应用到实际生产中的,而工程就是指把理论落地实际生产的过程。那么工程包含了什么?它包括了系统架构设计和模块设计、数据流搭建和平台搭建、调包或算法开发、分布式、上线以及各种落地的代码开发。报表和监控,其实本质也是做数据流,边缘性的可能要做些后台和前端的开发。
然后数据分析能力是什么?数据分析(不是纯粹的数据分析)除了分析方法论和套路外,是一个很综合性、相对偏软一点的能力,比如说你通过分析发现了我们的系统有哪些可以优化的点,通过分析发现了问题的原因是什么,这些都是分析能力。
思考二
针对前面的内容,和 Cathy 讨论后,对整个思路做了新的梳理,大家直接看图就好,居士也认为这样描述可能更为合理。
思考三
这里再补充一个模型复现的能力,比如你看了一篇论文,发现这个模型可能很适合自己的业务场景,那么你是否能力将论文里面的模型快速用公司现有的平台和工具来复现?
居士认为,这一个是一个非常重要的能力,但是没有想好具体该怎样划分。
⑶ 算法工程师工作期间需要掌握什么知识学到哪些核心技术
算法工程师的主要核心技术基于数学,并辅以语言。要全面掌握的知识包括高级数学,复变函数,线性代数的离散数学,数据结构以及数据挖掘所需的概率论和数学统计知识。不要太受约束去平时阅读教科书并多练习,并培养良好的思维能力。只有那些有想法的人才能拥有技术的未来。尝试实现您遇到的任何算法,无论算法的优劣总是有其自身的特征。此外,您必须具有一定的英语水平(至少6级),因为该领域的大多数官方材料都是外语。
计算机及相关专业本科以上学历,在互联网搜索,推荐,流量或相关领域有2年以上工作经验。熟悉机器学习/自然语言处理/数据挖掘/深度学习中至少一项的原理和算法,并且能够熟练地建模和解决业务问题。精通Linux平台下的C / C ++ / Java语言开发,精通使用gcc / gdb等开发工具,并精通Python / Linux Shell / SQL等脚本开发。熟悉hadoop / hbase / storm等分布式计算技术,并熟悉其运行机制和体系结构。具有出色的分析和解决问题的能力,思路清晰,并对工作挑战充满热情。具有强烈的工作责任感和团队合作精神,并能够交流和更好地学习。
⑷ 要成为算法工程师有哪些要求呢
算法的本质是为事物建立的数学模型。为事物建立模型需要大脑具备相应的思维模式,如果只是掌握一些数学知识和计算机知识,最终可能也就是个熟练工,而不能成为在各个领域驰骋的建模大师。所以必须让自己在逻辑学方面过关,尤其是中国人从事建模工作,更应该重视学习逻辑学。因为我们相对于西方民族的人,在逻辑思维方面先天就是弱势群体。那么要成为算法工程师有哪些要求呢?
1.专业要求:计算机、电子、通信、数学等相关专业;
2.学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
3.语言要求:英语要求是熟练,基本上能阅读国外专业书刊;
4.必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
5.算法工程师一般都是学的数据挖掘和机器学习,而且对专业要求比较高,对能力也有一定的限制。 算法工程师是一个非常高端的职位; 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上。
最基本的,你要学习计算机编程语言,数学,英语等等。算法是解决某个特定问题而产生的指令集合,在一定的时间,得到想要的结果。算法工程师算是个高端专业,方向一般有图形图像,音频等。像类似于车牌识别就是图形图像算法解决的。一般情况下,算法先抽象为数学函数,再由计算机编程语言来实现算法。其次,很多研究方向的文献多为英文读物,英语一定要能够看明白文献。最后祝你早日成为算法工程师
⑸ 想成为一名人工智能算法工程师,大学读什么专业
首先,从研究生的就业情况来看,近两年算法工程师的岗位需求量较前些年有了明显的下滑,目前大数据岗位的研发型人才需求量要相对大一些。所以,如果当前要想选择从事算法岗位,在选择空间上往往并不会很大,这一点应该做好心理准备。
在IT行业内多个领域都需要算法工程师,目前算法岗位多集中在大数据和人工智能相关领域,由于目前大数据正处在落地应用的初期,而人工智能行业也普遍存在落地难的问题,所以算法岗位的需求量受到了较大的影响。
从目前行业的发展趋势来看,算法岗位短期内出现爆发式人才需求的可能性并不大,一方面科技企业对于算法人才的储备相对比较充足(前些年招聘较多),另一方面算法研究也需要一个沉淀的过程。
从人才培养的角度来看,算法工程师往往都需要具备研究生学历,计算机专业、数学专业和统计学专业比较容易从事算法岗位(要看具体的研究方向),也有一部分经济学专业、物理专业、自动化专业的毕业生会从事算法岗位。
计算机相关专业从事算法岗位是比较常见的,其中以大数据方向、人工智能相关方向的毕业生从事算法岗位居多,实际上也有一部分计算机专业的本科生会选择算法岗位,这与自身的知识结构有较为密切的关系。
早期有不少数学相关专业的毕业生会从事算法岗位,但是目前数学专业的毕业生从事算法岗位的要求有了较为明显的提升,重点在于算法实现能力的要求(编程能力),这也导致一部分数学专业毕业生无法直接从事算法岗位。
目前,人工智能的研究和实践如火如荼,但是应该摆正心态,做好打持久战的准备,短时期内很难将该领域的技术研究透彻,并完全推广应用。一句话,此路任重而道远,但却是人类社会科技发展的必经阶段。
⑹ 算法工程师的就业前景如何
人工智能工作最受欢迎。算法工程师平均招聘工资建议达到25978元。由于人才匮乏,企业竞争激烈,平均加薪超过7%。该市90%以上的人工智能高薪工作都在天河区.近日,由广州天河人才港和BOSS直接就业研究院联合发布的《广州市天河区2018年1-4月人才趋势报告》,展示了该地区的主流发展趋势:IAB已经成为天河区,和天河区创新型企业和大型企业布局或发展的核心主方向,企业以高薪吸引更多的行业优秀人才。“天河区企业渴望以高薪攫取IAB人才,这意味着企业要在这些行业中发挥实力。
⑺ 在自学的情况下如何成为一名算法工程师
在自学的情况下成为一名算法工程师可以这样做:
首先要做好充分的准备,做任何事情想自学成才都是非常困难的,要有大毅力和大智慧,迎难而上,方可成功。
其次要知道成为算法工程师需要具备的知识:
一是算法相关的知识,包括编程语言,数据结构和数据库,相关的教材很多,一般大学计算机专业的教材都能满足要求,如果没有老师讲解,自己啃教材是很困难的,可以搜索一些网络课程辅助学习。
二是数学知识,我们知道所谓算法工程师,目前其核心还是在机器学习,而机器学习的学习中,数学知识是必不可少的。
三是实践经验,这一点很重要,一名合格的算法工程师必须要有足够的实践经验,不能空有理论。
⑻ 想从事算法工程师这个职业需要考取哪些证件
算法工程师是一个比较高端的职位;
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
⑼ 成为一名合格的算法工程师需要掌握哪些技能
算法工程师目前是一个高端也是相对紧缺的职位;近两年的就业前景是非常好的,薪资也比较高。但是算法工程师同时也需要不断学习。那么成为一名合格的算法工程师需要掌握哪些岗位技能呢,我们接着往下看。
业务学习能力
算法工程师是不可能脱离业务背景的,人工智能算法工程师、交通算法工程师、图像处理算法工程师等等。
针对一个业务场景设计一个合理的算法,业务知识是非常重要的,需要结合业务的实际情况、限定条件、各种专业词汇和知识都要有一定的了解,如果脱离场景而一味地琢磨算法,效果不会太好。
比如,做交通算法,需要对交通组织、交通管理、通行损失、周期延误等有所认知。比如,做图像处理,需要对各种图像去噪、图像增广、图像分割、物理成像有所了解,知道像素底层是怎么回事。
持续学习能力
算法工程师的主要工作就是拿着现有成熟的算法,结合面临业务场景去做一个合理的方案,如果我们知识面太窄,那显然当用到的时候会有点拮据,眼界也被限制住,不知道还有没有更好效果的算法、目前算法有哪些不足之处、在这个业务中能不能发挥作用。
只有持续学习,了解足够多的知识,当我们面临问题的时候能够快速对比、选择,找出最合适的一种算法。
灵活的思维
当我们选择一种算法去解决一个问题时,效果肯定无法达到我们预期的那样。比如我们拿mask rcnn做医学图像语义分割,我们看着它在自然图像方面表现效果很好,就拿来用于医学图像。但是医学图像有它的难点和特殊性,当跑出效果时会发现结果不如人意,这时候就需要灵活的思维去发现问题,去调优、改进,或者从数据入手,或者从网络模型入手,或者从超参数入手。
编程能力
不同公司对于算法工程师的定位有所差别,比如有些朋友在某公司做算法工程师只负责方案的设计,开发由专门的开发人员实施。有的公司算法工程师要完成算法设计到开发全部工作。
无论是哪一种形式,编程能力都是必要的,就算是前者这样的形式,有专门的开发人员,那在算法的设计过程中需要验证、对比,对每一个小模块算法进行指标评价,你不可能事事都找别人来帮你做,这样效率低,而且开展工作困难。综上所述,就是小编今天整理的关于算法工程师的相关内容,希望可以帮助到大家。
⑽ 如果想成为一个算法工程师,研究生期间应该做哪些准备
研究算法是以数学功底为主,语言为辅。
数学上要彻底掌握的知识有大学高数,复变函数,线性代数,离散数学,数据结构,还有数据挖掘中所需的概率论与数理统计知识等。
平时不要太拘泥于看教材,多实践,养成良好思维,有想法的人搞技术才有前途。尽量去实现自己遇到过的任何一种算法,算法无论好坏总有其特点。
此外还要有一定的英语水平(起码过个6级),因为这方面的官方资料大多是外文的。
总之,凡事无绝对,修行在个人,能不能成主要看你自己