Ⅰ 哪本书有讲到knn算法matlab
knnsearch(x,y,'k',5); 就表示在x中找y的最近的5个。返回结果 idx 是m行5列的矩阵,每一行是结果中最近的5个
Ⅱ 文本分类器(基于KNN算法),语言最好是Matlab的,有测试数据集。。。。
function [ccr,pgroupt]=knnt(x,group,K,dist,xt,groupt)
%#
%# AIM: to classify test set objects or unknown objects with the
%# K Nearest Neighbour method
%#
%# PRINCIPLE: KNN is a supervised, deterministic, non-parametric
%# classification method. It uses the majority rule to
%# assign new objects to a class.
%# It is assumed that the number of objects in each class
%# is similar.
%# There are no assumptions about the data distribution and
%# the variance-covariance matrices of each class.
%# There is no limitation of the number of variables when
%# the Euclidean distance is used.
%# However, when the correlation coefficient is used, the
%# number of variables must be larger than 1.
%# Ref: Massart D. L., Vandeginste B. G. M., Deming S. N.,
%# Michotte Y. and Kaufman L., Chemometrics: a textbook,
%# Chapter 23, 395-397, Elsevier Science Publishers B. V.,
%# Amsterdam 1988.
%#
%# INPUT: x: (mxn) data matrix with m objects and n variables,
%# containing samples of several classes (training set)
%# group: (mx1) column vector labelling the m objects from the
%# training set
%# K: integer, number of nearest neighbours
%# dist: integer,
%# = 1, Euclidean distance
%# = 2, Correlation coefficient, (No. of variables >1)
%# xt: (mtxn) data matrix with mt objects and n variables
%# (test set or unknowns)
%# groupt: (mtx1) column vector labelling the mt objects from
%# the test set
%# --> if the new objects are unknown, input [].
%#
%# OUTPUT: ccr: scalar, correct classification rate
%# pgroupt:row vector, predicted class label for the test set
%# 0 means that the object is not classified to any
%# class
%#
%# SUBROUTINES: sortlab.m: sorts the group label vector into classes
%#
%# AUTHOR: Wen Wu
%# Copyright(c) 1997 for ChemoAc
%# FABI, Vrije Universiteit Brussel
%# Laarbeeklaan 103 1090 Jette
%#
%# VERSION: 1.1 (28/02/1998)
%#
%# TEST: Andrea Candolfi
%#
function [ccr,pgroupt]=knnt(x,group,K,dist,xt,groupt);
if nargin==5, groupt=[]; end % for unknown objects
distance=dist; clear dist % change variable
if size(group,1)>1,
group=group'; % change column vector into row vector
groupt=groupt'; % change column vector into row vector
end;
[m,n]=size(x); % size of the training set
if distance==2 & n<2, error('Number of variables must > 1'),end % to check the number of variables when using correlation coefficient
[mt,n]=size(xt); % size of the test set
dis=zeros(mt,m); % initial values for the distance (matrix of zeros)
% Calculation of the distance for each test set object
for i=1:mt
for j=1:m % between each training set object and each test set object
if distance==1
dis(i,j)=(xt(i,:)-x(j,:))*(xt(i,:)-x(j,:))'; % Euclidian distance
else
r=corrcoef(xt(i,:)',x(j,:)'); % Correlation coefficient matrix
r=r(1,2); % Correlation coefficient
dis(i,j)=1-r*r; % 1 - the power of correlation coefficient
end
end
end
% Finding of the nearest neighbours
lab=zeros(1,mt); % initial values of lab
for i=1:mt % for each test object
[a,b]=sort(dis(i,:)); % sort distances
b=b(find(a<=a(K))); % to find the nearest neighbours indices
b=group(b); % the nearest neighbours objects
[ng,lgroup]=sortlab(b); % calculate the number of objects from each class in the nearest neighbours
a=find(ng==max(ng)); % find the class with the maximum number of objects
if length(a)==1 % only one class
lab(i)=lgroup(a); % class label
else
lab(i)=0; % more than one class
end
end
% Calculation of the success rate
if ~isempty(groupt)
dif=groupt-lab; % difference between predicted class label and known class label
ccr=sum(dif==0)/mt; % success rate
end
pgroupt=lab; % the output vector
Ⅲ 求k近邻法实例,有的给我发一个,matlab程序。求高手啊!
大奎!哥来要分!
发个算法吧,以免口舌,VS2008C#算法代码,刚学C#,代码有些粗糙,绝对好使,想要全部代码与本人联系。呵呵~: )
public void knnsf(float PH,float JD,float NH4,float COD,float BOD,float SS,float XTD)
{
double[,] kn = new double[81, 2];
int a = 0, b = 0, c = 0;
//计算欧氏距离
for (int i = 0; i < 27; i++ )
{
kn[i, 0] = Math.Sqrt( Math.Pow(class1[i, 1] - PH, 2) + Math.Pow(class1[i, 2] - JD, 2) + Math.Pow(class1[i, 3] - NH4, 2) +
Math.Pow(class1[i, 4] - COD, 2) + Math.Pow(class1[i, 5] - BOD, 2) + Math.Pow(class1[i, 6] - SS, 2) +
Math.Pow(class1[i, 7] - XTD, 2));
kn[i, 1] = 1;
kn[i+27,0] = Math.Sqrt(Math.Pow(class2[i, 1] - PH, 2) + Math.Pow(class2[i, 2] - JD, 2) + Math.Pow(class2[i, 3] - NH4, 2) +
Math.Pow(class2[i, 4] - COD, 2) + Math.Pow(class2[i, 5] - BOD, 2) + Math.Pow(class2[i, 6] - SS, 2) +
Math.Pow(class2[i, 7] - XTD, 2));
kn[i+27, 1] = 2;
kn[i+54,0] = Math.Sqrt(Math.Pow(class3[i, 1] - PH, 2) + Math.Pow(class3[i, 2] - JD, 2) + Math.Pow(class3[i, 3] - NH4, 2) +
Math.Pow(class3[i, 4] - COD, 2) + Math.Pow(class3[i, 5] - BOD, 2) + Math.Pow(class3[i, 6] - SS, 2) +
Math.Pow(class3[i, 7] - XTD, 2));
kn[i+54, 1] = 3;
}
//选择排序法
for (int i = 0; i < 81; i++ )
{
int k = 0;
double mintmp = kn[i, 0],clas=kn[i,1];
for (int j = i+1; j < 81; j++)
{
if (mintmp > kn[j, 0])
{
mintmp = kn[j, 0];
clas = kn[j, 1];
k = j;
}
}
kn[k, 0] = kn[i, 0];
kn[k, 1] = kn[i, 1];
kn[i, 0] = mintmp;
kn[i, 1] = clas;
}
//选择K=30个近邻
for (int k = 0; k < 3; k++)
{
if (kn[k, 1] == 1) a++;
if (kn[k, 1] == 2) b++;
if (kn[k, 1] == 3) c++;
}
//统计近邻类别
if (a > b && a > c)
{
classes = 1;
}
if (b > a && b > c)
{
classes = 2;
}
if (c > b && c > a)
{
classes = 3;
}
}
Ⅳ MATLAB中KNN均值滤波器代码…… 作业,急!!求教大虾
道德
Ⅳ k近邻算法的案例介绍
如 上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素: K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
实现 K 近邻算法时,主要考虑的问题是如何对训练数据进行快速 K 近邻搜索,这在特征空间维数大及训练数据容量大时非常必要。
Ⅵ knn最基本的Matlab仿真怎么弄
准备条件:已经把特征数据和样本标号保存为文件。
测试代码为:
[plain]
view
plain
train_data=load('sample_feature.txt');
train_label=load('train_label.txt');
test_data=load('features.txt');
k=knnclassify(test_data,train_data,train_label,3,'cosine','random');
train_data保存的是训练样本特征,要求是最能代表本类别的,不一定多,当然不能太少;
train_label保存的是样本标号,如0,1,2等等,随便设置,只有能区分就行,具体格式可以为:
[plain]
view
plain
1
1
2
2
3
3
test_data测试文件保存的是测试数据的特征;
Ⅶ Matlab 报错 Unexpected MATLAB expression
是你的linewidth这个参数的大小写的问题
将linewidth改成LineWidth就可以了
即
plot(time,R(1)*ones(N,1),time,yreal(:1),'LineWidth',3);
Ⅷ 求毕设:基于KNN的异常入侵检测
数据仓库,数据库或者其它信息库中隐藏着许多可以为商业、科研等活动的决策提供所需要的知识。分类与预测是两种数据分析形式,它们可以用来抽取能够描述重要数据集合或预测未来数据趋势的模型。分类方法(Classification)用于预测数据对象的离散类别(Categorical Label);预测方法(Prediction )用于预测数据对象的连续取值。
分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估;当前的市场营销中很重要的一个特点是强调客户细分。客户类别分析的功能也在于此,采用数据挖掘中的分类技术,可以将客户分成不同的类别,比如呼叫中心设计时可以分为:呼叫频繁的客户、偶然大量呼叫的客户、稳定呼叫的客户、其他,帮助呼叫中心寻找出这些不同种类客户之间的特征,这样的分类模型可以让用户了解不同行为类别客户的分布特征;其他分类应用如文献检索和搜索引擎中的自动文本分类技术;安全领域有基于分类技术的入侵检测等等。机器学习、专家系统、统计学和神经网络等领域的研究人员已经提出了许多具体的分类预测方法。下面对分类流程作个简要描述:
训练:训练集——>特征选取——>训练——>分类器
分类:新样本——>特征选取——>分类——>判决
最初的数据挖掘分类应用大多都是在这些方法及基于内存基础上所构造的算法。目前数据挖掘方法都要求具有基于外存以处理大规模数据集合能力且具有可扩展能力。下面对几种主要的分类方法做个简要介绍:
(1)决策树
决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。
(2) KNN法(K-Nearest Neighbor)
KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种Reverse KNN法,能降低KNN算法的计算复杂度,提高分类的效率。
该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
(3) SVM法
SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。
支持向量机算法的目的在于寻找一个超平面H(d),该超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的分类结果。
(4) VSM法
VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。
在实际应用中,VSM法一般事先依据语料库中的训练样本和分类体系建立类别向量空间。当需要对一篇待分样本进行分类的时候,只需要计算待分样本和每一个类别向量的相似度即内积,然后选取相似度最大的类别作为该待分样本所对应的类别。
由于VSM法中需要事先计算类别的空间向量,而该空间向量的建立又很大程度的依赖于该类别向量中所包含的特征项。根据研究发现,类别中所包含的非零特征项越多,其包含的每个特征项对于类别的表达能力越弱。因此,VSM法相对其他分类方法而言,更适合于专业文献的分类。
(5) Bayes法
Bayes法是一种在已知先验概率与类条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。
设训练样本集分为M类,记为C={c1,…,ci,…cM},每类的先验概率为P(ci),i=1,2,…,M。当样本集非常大时,可以认为P(ci)=ci类样本数/总样本数。对于一个待分样本X,其归于cj类的类条件概率是P(X/ci),则根据Bayes定理,可得到cj类的后验概率P(ci/X):
P(ci/x)=P(x/ci)·P(ci)/P(x)(1)
若P(ci/X)=MaxjP(cj/X),i=1,2,…,M,j=1,2,…,M,则有x∈ci(2)
式(2)是最大后验概率判决准则,将式(1)代入式(2),则有:
若P(x/ci)P(ci)=Maxj〔P(x/cj)P(cj)〕,i=1,2,…,M,j=1,2,…,M,则x∈ci
这就是常用到的Bayes分类判决准则。经过长期的研究,Bayes分类方法在理论上论证得比较充分,在应用上也是非常广泛的。
Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。
(6)神经网络
神经网络分类算法的重点是构造阈值逻辑单元,一个值逻辑单元是一个对象,它可以输入一组加权系数的量,对它们进行求和,如果这个和达到或者超过了某个阈值,输出一个量。如有输入值X1, X2, ..., Xn 和它们的权系数:W1, W2, ..., Wn,求和计算出的 Xi*Wi ,产生了激发层 a = (X1 * W1)+(X2 * W2)+...+(Xi * Wi)+...+ (Xn * Wn),其中Xi 是各条记录出现频率或其他参数,Wi是实时特征评估模型中得到的权系数。神经网络是基于经验风险最小化原则的学习算法,有一些固有的缺陷,比如层数和神经元个数难以确定,容易陷入局部极小,还有过学习现象,这些本身的缺陷在SVM算法中可以得到很好的解决。
Ⅸ KNN算法,k近邻
K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
Ⅹ 求MATLAB 编写的支持向量机、神经网络、KNN或EM算法有关“数据缺失”的源程序满意最少在加100分。谢谢!!
好像这些算法在数据缺失的情况下是没法进行的吧,只能说改进之后在数据缺失情况下做了相应处理,你说的这些算法都可以在网上找到代码