导航:首页 > 源码编译 > 项目调度遗传算法代码

项目调度遗传算法代码

发布时间:2022-05-07 00:01:09

㈠ 加工车间调度遗传算法C++代码

这个有点深哦,你是研究生还是在做毕设啊?

㈡ 利用matlab软件实现遗传算法,解决生产调度问题

对于遗传算法,matlab自己内置了工具箱函数,你完全不用编码,只需要弄懂里面的参数设置问题就行。

matlab的遗传算法实现函数是ga(),对应的设置参数的函数是gaoptimset。有哪些参数可以设置可以直接在命令窗口输入gaoptimset。ga的用法可以在命令窗口输入doc ga 查看,祝好。

㈢ 电力系统调度遗传算法matlab程序

matlab自带的有
遗传算法
工具箱,也就是两个函数,分别是
x
=
ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)options
=
gaoptimset('param1',value1,'param2',value2,...)在
帮助文件
(doc
ga/gaoptimset)里面自己好还看看它的用法就可以了,每一个参数都有详细的说明,应该可以帮助到你。

㈣ 遗传算法的matlab代码实现是什么

遗传算法我懂,我的论文就是用着这个算法,具体到你要遗传算法是做什么?优化什么的。。。我给你一个标准遗传算法程序供你参考:
该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear

%% 初始化遗传算法参数
%初始化参数
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间

lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围

indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体

%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];

%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x);
end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

㈤ 急求关于资源调度的遗传算法源代码,java语言

车间作业调度问题遗传算法 %--- % 输入参数列表 % M 遗传进化迭代次数 %newfarm=cell(1,N);%交叉产生的新种群存在其中 Ser=randperm(N); for i,

㈥ 跪求C#编写车间调度问题的遗传算法代码

占个位置

㈦ 谁有车间作业调度问题遗传算法的MATLAB源码,要完整的程序哦~

function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)

%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
LC1=zeros(1,M);%收敛曲线1
LC2=zeros(1,N);%收敛曲线2

%第二步:随机产生初始种群
farm=cell(1,N);%采用细胞结构存储种群
for k=1:N
X=zeros(m,n);
for j=1:n
for i=1:m
X(i,j)=1+(P(j)-eps)*rand;
end
end
farm{k}=X;
end

counter=0;%设置迭代计数器
while counter

%第三步:交叉
newfarm=cell(1,N);%交叉产生的新种群存在其中
Ser=randperm(N);
for i=1:2:(N-1)
A=farm{Ser(i)};%父代个体
B=farm{Ser(i+1)};
Manner=unidrnd(2);%随机选择交叉方式
if Manner==1
cp=unidrnd(m-1);%随机选择交叉点
%双亲双子单点交叉
a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
b=[B(1:cp,:);A((cp+1):m,:)];
else
cp=unidrnd(n-1);%随机选择交叉点
a=[A(:,1:cp),B(:,(cp+1):n)];%双亲双子单点交叉
b=[B(:,1:cp),A(:,(cp+1):n)];
end
newfarm{i}=a;%交叉后的子代存入newfarm
newfarm{i+1}=b;
end
%新旧种群合并
FARM=[farm,newfarm];

%第四步:选择复制
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
plotif=0;
for i=1:(2*N)
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
fitness(i)=FITNESS(Ser(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};

%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;

counter=counter+1
end

%输出结果并绘图
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2);

㈧ 求遗传算法车辆调度优化问题的建模模型和MATLAB源代码

1、要看你组合优化是属于哪种问题,一般的组合优化都是混合整数线性或非线性的,那么就不行了,因此要对遗传算法改进才能计算。2、如果有现成的工具箱求解你的组合优化问题肯定要方便些,但碰到具体问题,可能要对参数进行一些设置更改,所以最好能有编程基础,那样就可以自己修改工具箱里面的参数或策略了对你的补充问题,组合优化问题一般都是用matlab和lingo实现吧。建议买一本数学建模的书看一看,都涉及到组合优化问题,也可以下载论文看看。lingo对编程要简单些,主要是求混合规划,缺点是似乎还不能用上多目标问题,一般的组合优化都属于多目标问题。但是matlab功能强大的多。

㈨ 急求matlab车辆调度遗传算法代码,需求车辆行驶最优路径。

function [path,lmin]=ga(data,d) %data为点集,d为距离矩阵,即赋权图
tic
%======================
sj0=data;%开环最短路线
%=================================
% sj0=[data;data(1,:)]; %闭环最短路线
%=========================
x=sj0(:,1);y=sj0(:,2);
N=length(x);
%=========================
% d(N,:)=d(1,:);%闭环最短路线
% d(:,N)=d(:,1);%距离矩阵d
%======================
L=N; %sj0的长度
w=800;dai=1000;
%通过改良圈算法选取优良父代A
for k=1:w
c=randperm(L-2);
c1=[1,c+1,L];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
end
J(k,c1)=1:L;
end
J=J/L;
J(:,1)=0;J(:,L)=1;
rand('state',sum(clock));
%遗传算法实现过程
A=J;
for k=1:dai %产生0~1 间随机数列进行编码
B=A;
c=randperm(w);
%交配产生子代B
for i=1:2:w
F=2+floor(100*rand(1));
temp=B(c(i),F:L);
B(c(i),F:L)=B(c(i+1),F:L);
B(c(i+1),F:L)=temp;
end;
%变异产生子代C
by=find(rand(1,w)<0.1);
if length(by)==0
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>=floor(1+fix(rand(1,3)*N)); %产生1-N的3个随机数
<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>=sort(<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>);
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:L]);
end
G=[A;B;C];
<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>=size(G,1);
%在父代和子代中选择优良品种作为新的父代
[<a href="https://www..com/s?wd=dd&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">dd</a>,IX]=sort(G,2);
temp=[];
temp(1:<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>)=0;
for j=1:<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>
for i=1:L-1
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1));
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:);
end
path=IX(IZ(1),:)
% for i=1:length(path)
% path(i)=path(i)-1;
% end
% path=path(2:end-1);
lmin=0;l=0;
for j=1:(length(path)-1)
<a href="https://www..com/s?wd=t1&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">t1</a>=path(j);t2=path(j+1);
l=d(<a href="https://www..com/s?wd=t1&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">t1</a>,t2);
lmin=lmin+l;
end
xx=sj0(path,1);yy=sj0(path,2);
plot(xx,yy,'r-o');
axis equal
toc

㈩ 求一个遗传算法进行电力系统优化调度 代码

发一份自编的MATLAB遗传算法代码,用简单遗传算法(Simple Genetic Algorithm or Standard Genetic Algorithm ,SGA)求取函数最大值,初版编写于7年前上学期间,当时是MATLAB 5.x,在算法运行效率方面做了修改,主要是采用矩阵操作减少了循环。

遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。

优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。

遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。

遗传算法有三个进化算子:选择(复制)、交叉和变异。

SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。

交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。

变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。

遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。

由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。

下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。

(注:一位网名为mosquitee的朋友提醒我:原代码的变异点位置有问题。检验后发现是将最初的循环实现方法改为矩阵实现方法时为了最优去掉mm的第N行所致,导致变异点位置发生了变化,现做了修改,修改部分加了颜色标记,非常感谢mosquitee,2010-4-22)

% Optimizing a function using Simple Genetic Algorithm with elitist preserved
%Max f(x1,x2)=100*(x1*x1-x2).^2+(1-x1).^2; -2.0480<=x1,x2<=2.0480
% Author: Wang Yonglin ([email protected])
clc;clear all;
format long;%设定数据显示格式
%初始化参数
T=100;%仿真代数
N=80;% 群体规模
pm=0.05;pc=0.8;%交叉变异概率
umax=2.048;umin=-2.048;%参数取值范围
L=10;%单个参数字串长度,总编码长度2L
bval=round(rand(N,2*L));%初始种群
bestv=-inf;%最优适应度初值
%迭代开始
for ii=1:T
%解码,计算适应度
for i=1:N
y1=0;y2=0;
for j=1:1:L
y1=y1+bval(i,L-j+1)*2^(j-1);
end
x1=(umax-umin)*y1/(2^L-1)+umin;
for j=1:1:L
y2=y2+bval(i,2*L-j+1)*2^(j-1);
end
x2=(umax-umin)*y2/(2^L-1)+umin;
obj(i)=100*(x1*x1-x2).^2+(1-x1).^2; %目标函数
xx(i,:)=[x1,x2];
end
func=obj;%目标函数转换为适应度函数
p=func./sum(func);
q=cumsum(p);%累加
[fmax,indmax]=max(func);%求当代最佳个体
if fmax>=bestv
bestv=fmax;%到目前为止最优适应度值
bvalxx=bval(indmax,:);%到目前为止最佳位串
optxx=xx(indmax,:);%到目前为止最优参数
end
Bfit1(ii)=bestv; % 存储每代的最优适应度
%%%%遗传操作开始
%轮盘赌选择
for i=1:(N-1)
r=rand;
tmp=find(r<=q);
newbval(i,:)=bval(tmp(1),:);
end
newbval(N,:)=bvalxx;%最优保留
bval=newbval;
%单点交叉
for i=1:2:(N-1)
cc=rand;
if cc<pc
point=ceil(rand*(2*L-1));%取得一个1到2L-1的整数
ch=bval(i,:);
bval(i,point+1:2*L)=bval(i+1,point+1:2*L);
bval(i+1,point+1:2*L)=ch(1,point+1:2*L);
end
end
bval(N,:)=bvalxx;%最优保留
%位点变异
mm=rand(N,2*L)<pm;%N行
mm(N,:)=zeros(1,2*L);%最后一行不变异,强制赋0
bval(mm)=1-bval(mm);
end

%输出
plot(Bfit1);% 绘制最优适应度进化曲线
bestv %输出最优适应度值
optxx %输出最优参数

阅读全文

与项目调度遗传算法代码相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:579
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:426
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:350