导航:首页 > 源码编译 > 二元一次方程公式计算法视频教程

二元一次方程公式计算法视频教程

发布时间:2022-05-15 09:36:33

1. 二元一次方程怎么算

消元法“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。[1]
消元方法一般分为:代入消元法,简称:代入法(常用)加减消元法,简称:加减法(常用)
顺序消元法,(这种方法不常用)整体代入法.(不常用)
以下是消元方法的举例:
解:{x-y=3①
{3x-8y=4②
由①得x=y+3 ③
把③代入②得
3(y+3)-8y=4
3y+9-8y=4
-5y= -5
5y=5
y=1
把y=1代入(1)得
x-y=3
x-1=3
x=4
原方程组的解为{x=4
{y=1
实用方法
解{13x+14y=41①
{14x+13y=40②
27x+27y=81
y-x=1
27y=54
y=2
x=1
y=2
把y=2代入(3)得
即x=1
所以:x=1,y=2
最后 x=1 , y=2, 解出来
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
代入法
是二元一次方程的另一种解法,就是说把一个方程用其他未知数表示,再带入另一个方程中.
如:
x+y=590
y+20=90%x
代入后就是:
x+90%x-20=590
例2:(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程[2] 也是主要原因。

2. 二元一次方程万能公式法是什么

二元一次方程万能公式:b^2-4ac>=0,方程有实数根,否则是虚数根。

实数解是:

[-b+sqrt(b^2-4ac)]/2a。

[-b-sqrt(b^2-4ac)]/2a。

二元一次方程的含义

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。

3. 二元一次方程怎么计算

“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。一.代入消元法解二元一次方程的一般步骤
用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
代入消元法:把其中一个方程的某个未知数的系数变成1,代入另一个方程即可。比如:
2x+y=9

5x+3y=21②
解:由①得:y=9-2x

把③代入②得:5x+3(9-2x)=21
5x+27-6x
=21
5x-6x
=
21-27
-x
=
-6
x
=6
把x=6代入③得:y=-3
∴方程组的解为
x=6
y=-3二.加减消元法
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法。
用加减法解二元一次方程的一般步骤是:
1.
将其中一个未知数的系数化成相同(或互为相反数);
2.
通过相减(或相加)消去这个未知数,得到一个一元一次方程;
3.
解这个一元一次方程,得到这个未知数的值;
4.
将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值;
5.
写出方程组的解。
例题:
1.
3x+2y=7

5x-2y=1

解:
①+②
:
(3x+5x)+2y+(-2y))=(7+1)
8x=8

x=1
把X代入①
:
3x+2y=7
3×1+2y=7
2y=4

y=2

x=1
y=2

4. 怎么计算二元一次方程

观察各未知量前面系数的特征,只要将相同未知量前的系数化为绝对值相等的值后即可利用加减法进行消元,同时在运算中注意归纳解题的技巧和解题的方法.
加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元.故在教学中应反复教会学生观察并抓住解题的特征及办法从而方便解题.
根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉
,得到一个一元一次方程,进而求得二元一次方程组的解.
我们将原方程组的两个方程相加或相减,把“二元”化成了“一元”,从而得到了方程组的解.像这种解二元一次方程组的方法叫加减消元法,简称“加减法”.
在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)
1.3x+5y=19
2.6x-5y=8
+5y与-5y互为相反数,将1与2两个等式的左边与右边分别相加:(3x+5y)+(6x-5y)=19+8
9x=27
x=3
带入1.得y=2
什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)
1.3x+2y=13
2.3x+4y=17
3x与3x系数相等,将1和2方程两边分别相减,(3x+2y)-(3x+4y)=13-17
2y-4y=-4
y=2带入1.得x=3
如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元.
1.2x+3y=12
2.x+5y=13
2x与x的系数不同,将x+5y=13方程两边都乘以同一个适当的数2,2x+10y=26,这个过程叫变形
1.2x+3y=12
2.2x+10y=26
(2x+3y)-(2x+10y)=12-26
3y-10y=12-26
y=2
带入1.得x=3

5. 解二元一次方程 公式法的公式是什么

x=(-b±√(b²-4ac))/2a。

设一个一元二次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为一元二次方程所以a不能等于0。

求根公式为:x=(-b±√(b²-4ac))/2a。

(5)二元一次方程公式计算法视频教程扩展阅读:

一元二次方程有四种解法:

1、直接开平方法。

2、配方法。

3、公式法。

4、因式分解法。

在一元二次方程ax^2+bx+c=0中,△=b²-4ac。

1、当△=0时,x=-b/2a ,有两个相同的根。

2、当△>0时,x=(-b±√(b²-4ac))/2a ,有两个不相同的根。

3、当△<0时,x=(-b±i√(b²-4ac))/2a ,有两个虚根。

6. 二元一次方程的解法公式法是什么

二元一次方程的解法公式法是:ax+bx+c=0,(a≠0),x=[-b±√(b-4ac)]/2a。含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

二元一次方程的定义

含有两个未知数并且所含未知数最高次数是1的整式方程。性质,二次一次方程的解有不定性,般地它有无数组解。什么是二元一次方程这个教科书上有明确的定义无需多言,而它的一般形式ax加by等于c在我们平时用作判断时是非常有用的,这里a、b、c是常数,a、b不等于0,只要对照一下就能清楚辨别。二元一次方程其实就是一次函数,所以我们可以把它变成函数形式就可以了解它的性质。

7. 二元一次方程计算

二元一次方程解法大全
1、直接开平方法:
直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.
例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解:9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0(a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2
方程左边成为一个完全平方式:(x+)2=
当b^2-4ac≥0时,x+=±
∴x=(这就是求根公式)
例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)
解:将常数项移到方程右边3x^2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+()2=+()2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2=.
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2,b=-8,c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解为x1=,x2=.
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1)(x+3)(x-6)=-8(2)2x2+3x=0
(3)6x2+5x-50=0(选学)(4)x2-2(+)x+4=0(选学)
(1)解:(x+3)(x-6)=-8化简整理得
x2-3x-10=0(方程左边为二次三项式,右边为零)
(x-5)(x+2)=0(方程左边分解因式)
∴x-5=0或x+2=0(转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0(用提公因式法将方程左边分解因式)
∴x=0或2x+3=0(转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0(十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=,x2=-是原方程的解。
(4)解:x2-2(+)x+4=0(∵4可分解为2·2,∴此题可用因式分解法)
(x-2)(x-2)=0
∴x1=2,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

8. 二元一次方程求根公式

一元二次求根公式为x=(-b±√(b^2-4ac))/(2a)。

解:对于一元二次方程,用求根公式求解的步骤如下。

1、把一元二次方程化简为一元二次方程的一般形式,即ax^2+bx+c=0(其中a≠0)。

2、求出判别式△=b^2-4ac的值,判断该方程根的情况。

若△>0,该方程有两个不相等的实数。若△=0,该方程有两个相等的实数根。若△<0,那么该方程没有实数根。

3、然后根据求根公式x=(-b±√(b^2-4ac))/(2a)进行计算,求出该一元二方程的解。

(8)二元一次方程公式计算法视频教程扩展阅读:

1、一元二次方程的求解方法

(1)求根公式法

对于一元二次方程ax^2+bx+c=0(a≠0),可根据求根公式x=(-b±√(b^2-4ac))/(2a)进行求解。

(2)因式分解法

首先对方程进行移项,使方程的右边化为零,然后将方程的左边转化为两个一元一次方程的乘积,最后令每个因式分别为零分别求出x的值。x的值就是方程的解。

(3)开平方法

如果一元二次方程是x^2=p或者(mx+n)^2=p(p≥0)形式,则可采用直接开平方法解一元二次方程。可得x=±√p,或者mx+n=±√p。

2、一元二次方程的形式

(1)一般形式

一元二次方程的一般形式为ax^2+bx+c=0,其中a≠0,ax^2为二次项,bx为一次项,c为常数项。

(2)变形式

一元二次方程的变形式有ax^2+bx=0,ax^2+c=0。

(3)配方式

参考资料来源:网络-一元二次方程

9. 二元一次方程求解公式

二元一次方程求解公式如下:

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a

(9)二元一次方程公式计算法视频教程扩展阅读:

韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。

一元二次方程的根的判别式为(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

10. 二元一次方程解法公式

没有公式
只有加减法和代入法
加减法:
如A+B=3
(1)
A-B=1
(2)
(1)+(2)得
2A=4
A=2代入法
A+B=3
(1)
A-B=1
(2)
由(1)得A=3-B
把A=3-B代入(2)得
3-B-B=1
B=1
所以A=2

阅读全文

与二元一次方程公式计算法视频教程相关的资料

热点内容
汽车小压缩机拆解 浏览:825
云桌面卡是因为服务器的原因吗 浏览:377
qd123压缩机 浏览:969
pn532读取加密门禁卡 浏览:85
win10文件夹属性里无法加密 浏览:34
比特币加密的条件 浏览:848
求购现成影视app源码 浏览:572
wdsecurity加密版 浏览:814
云服务器和云丰云 浏览:188
服务器如何设置独立ip 浏览:857
tar命令打包文件夹 浏览:1000
删除linux用户和组 浏览:548
小米的程序员都用什么笔记本 浏览:703
字节三面算法题 浏览:971
服务器保护有什么好处 浏览:894
全部下载完后进行统一解压 浏览:393
远嫁的程序员妈妈 浏览:555
1024程序员节安全攻防挑战赛 浏览:786
怎么解除txt加密 浏览:772
javahttp流 浏览:656