导航:首页 > 源码编译 > 推荐算法实践音乐歌单

推荐算法实践音乐歌单

发布时间:2022-05-16 10:55:36

❶ 推荐系统实践的作品目录

第1章 好的推荐系统 1
1.1 什么是推荐系统 1
1.2 个性化推荐系统的应用 4
1.2.1 电子商务 4
1.2.2 电影和视频网站 8
1.2.3 个性化音乐网络电台 10
1.2.4 社交网络 12
1.2.5 个性化阅读 15
1.2.6 基于位置的服务 16
1.2.7 个性化邮件 17
1.2.8 个性化广告 18
1.3 推荐系统评测 19
1.3.1 推荐系统实验方法 20
1.3.2 评测指标 23
1.3.3 评测维度 34
第2章 利用用户行为数据 35
2.1 用户行为数据简介 36
2.2 用户行为分析 39
2.2.1 用户活跃度和物品流行度的分布 39
2.2.2 用户活跃度和物品流行度的关系 41
2.3 实验设计和算法评测 41
2.3.1 数据集 42
2.3.2 实验设计 42
2.3.3 评测指标 42
2.4 基于邻域的算法 44
2.4.1 基于用户的协同过滤算法 44
2.4.2 基于物品的协同过滤算法 51
2.4.3 UserCF和ItemCF的综合比较 59
2.5 隐语义模型 64
2.5.1 基础算法 64
2.5.2 基于LFM的实际系统的例子 70
2.5.3 LFM和基于邻域的方法的比较 72
2.6 基于图的模型 73
2.6.1 用户行为数据的二分图表示 73
2.6.2 基于图的推荐算法 73
第3章 推荐系统冷启动问题 78
3.1 冷启动问题简介 78
3.2 利用用户注册信息 79
3.3 选择合适的物品启动用户的兴趣 85
3.4 利用物品的内容信息 89
3.5 发挥专家的作用 94
第4章 利用用户标签数据 96
4.1 UGC标签系统的代表应用 97
4.1.1 Delicious 97
4.1.2 CiteULike 98
4.1.3 Last,fm 98
4.1.4 豆瓣 99
4.1.5 Hulu 99
4.2 标签系统中的推荐问题 100
4.2.1 用户为什么进行标注 100
4.2.2 用户如何打标签 101
4.2.3 用户打什么样的标签 102
4.3 基于标签的推荐系统 103
4.3.1 实验设置 104
4.3.2 一个最简单的算法 105
4.3.3 算法的改进 107
4.3.4 基于图的推荐算法 110
4.3.5 基于标签的推荐解释 112
4.4 给用户推荐标签 115
4.4.1 为什么要给用户推荐标签 115
4.4.2 如何给用户推荐标签 115
4.4.3 实验设置 116
4.4.4 基于图的标签推荐算法 119
4.5 扩展阅读 119
第5章 利用上下文信息 121
5.1 时间上下文信息 122
5.1.1 时间效应简介 122
5.1.2 时间效应举例 123
5.1.3 系统时间特性的分析 125
5.1.4 推荐系统的实时性 127
5.1.5 推荐算法的时间多样性 128
5.1.6 时间上下文推荐算法 130
5.1.7 时间段图模型 134
5.1.8 离线实验 136
5.2 地点上下文信息 139
5.3 扩展阅读 143
第6章 利用社交网络数据 144
6.1 获取社交网络数据的途径 144
6.1.1 电子邮件 145
6.1.2 用户注册信息 146
6.1.3 用户的位置数据 146
6.1.4 论坛和讨论组 146
6.1.5 即时聊天工具 147
6.1.6 社交网站 147
6.2 社交网络数据简介 148社交网络数据中的长尾分布 149
6.3 基于社交网络的推荐 150
6.3.1 基于邻域的社会化推荐算法 151
6.3.2 基于图的社会化推荐算法 152
6.3.3 实际系统中的社会化推荐算法 153
6.3.4 社会化推荐系统和协同过滤推荐系统 155
6.3.5 信息流推荐 156
6.4 给用户推荐好友 159
6.4.1 基于内容的匹配 161
6.4.2 基于共同兴趣的好友推荐 161
6.4.3 基于社交网络图的好友推荐 161
6.4.4 基于用户调查的好友推荐算法对比 164
6.5 扩展阅读 165
第7章 推荐系统实例 166
7.1 外围架构 166
7.2 推荐系统架构 167
7.3 推荐引擎的架构 171
7.3.1 生成用户特征向量 172
7.3.2 特征?物品相关推荐 173
7.3.3 过滤模块 174
7.3.4 排名模块 174
7.4 扩展阅读 178
第8章 评分预测问题 179
8.1 离线实验方法 180
8.2 评分预测算法 180
8.2.1 平均值 180
8.2.2 基于邻域的方法 184
8.2.3 隐语义模型与矩阵分解模型 186
8.2.4 加入时间信息 192
8.2.5 模型融合 193
8.2.6 Netflix Prize的相关实验结果 195
后记 196

❷ 大家给推荐几首适合社会实践PPT的背景音乐,主题是大学生农村支教,时间3-5分钟…谢谢了

《最好的未来》
《和你一样》
《阳光总在风雨后》
《神秘园》轻音乐,但他们大部分歌曲都非常适合北京音乐。

❸ 3分钟轻松了解个性化推荐算法

推荐这种体验除了电商网站,还有新闻推荐、电台音乐推荐、搜索相关内容及广告推荐,基于数据的个性化推荐也越来越普遍了。今天就针对场景来说说这些不同的个性化推荐算法吧。
说个性化之前,先提一下非个性化。 非个性化的推荐也是很常见的,毕竟人嘛都有从众心理,总想知道大家都在看什么。非个性化推荐的方式主要就是以比较单一的维度加上半衰期去看全局排名,比如,30天内点击排名,一周热门排名。

但是只靠非个性化推荐有个弊端,就是马太效应,点的人越多的,经过推荐点得人有更多。。。强者越强,弱者机会越少就越弱,可能导致两级分化严重,一些比较优质素材就被埋没了。

所以,为了解决一部分马太效应的问题,也主要是顺应数据化和自动化的模式,就需要增加个性化的推荐(可算说到正题了。。。)个性化的优点是不仅体验好,而且也大大增加了效率,让你更快找到你感兴趣的东西。YouTube也曾做过实验测试个性化和非个性化的效果,最终结果显示个性化推荐的点击率是同期热门视频的两倍。

1.新闻、视频、资讯和电台(基于内容推荐)

一般来说,如果是推荐资讯类的都会采用基于内容的推荐,甚至早期的邮件过滤也采用这种方式。

基于内容的推荐方法就是根据用户过去的行为记录来向用户推荐相似额推荐品。简单来说就是你常常浏览科技新闻,那就更多的给你推荐科技类的新闻。

复杂来说,根据行为设计权重,根据不同维度属性区分推荐品都是麻烦的事,常用的判断用户可能会喜欢推荐品程度的余弦向量公式长这样,我就不解释了(已经勾起了我关于高数不好的回忆)。。。

但是,这种算法缺点是由于内容高度匹配,导致推荐结果的惊喜度较差,而且有冷启动的问题,对新用户不能提供可靠的推荐结果。并且,只有维度增加才能增加推荐的精度,但是维度一旦增加计算量也成指数型增长。如果是非实体的推荐品,定义风格也不是一件容易的事,同一个作者的文风和曲风也会发生改变。

2.电商零售类(协同过滤推荐和关联规则推荐)

说电商推荐那不可能不讲到亚马逊,传言亚马逊有三成的销售额都来自个性化的商品推荐系统。实际上,我自己也常常在这里找到喜欢的书,也愿意主动的去看他到底给我推荐了什么。

一般,电商主流推荐算法是基于一个这样的假设,“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”即协同过滤过滤算法。主要的任务就是找出和你品味最相近的用户,从而根据最近他的喜好预测你也可能喜欢什么。

这种方法可以推荐一些内容上差异较大但是又是用户感兴趣的物品,很好的支持用户发现潜在的兴趣偏好。也不需要领域知识,并且随着时间推移性能提高。但是也存在无法向新用户推荐的问题,系统刚刚开始时推荐质可能较量差。

电商行业也常常会使用到基于关联规则的推荐。即以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。比如,你购买了羽毛球拍,那我相应的会向你推荐羽毛球周边用品。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零售业中已经得到了成功的应用。

3.广告行业(基于知识推荐)

自从可以浏览器读取cookies,甚至获得年龄属性等信息,广告的个性化投放就也可以根据不同场景使用了。

当用户的行为数据较少时,基于知识的推荐可以帮助我们解决这类问题。用户必须指定需求,然后系统设法给出解决方式。假设,你的广告需要指定某地区某年龄段的投放,系统就根据这条规则进行计算。基于知识的推荐在某种程度是可以看成是一种推理技术。这种方法不需要用户行为数据就能推荐,所以不存在冷启动问题。推荐结果主要依赖两种形式,基于约束推荐和基于实例推荐。

4.组合推荐

由于各种推荐方法都有优缺点,所以在实际中,并不像上文讲的那样采用单一的方法进行建模和推荐(我真的只是为了解释清楚算法)。。。

在组合方式上,也有多种思路:加权、变换、混合、特征组合、层叠、特征扩充、元级别。 并且,为了解决冷启动的问题,还会相应的增加补足策略,比如根据用户模型的数据,结合挖掘的各种榜单进行补足,如全局热门、分类热门等。 还有一些开放性的问题,比如,需不需要帮助用户有品味的提升,引导人去更好的生活。

最后,我总想,最好的推荐效果是像一个了解你的朋友一样跟你推荐,因为他知道你喜欢什么,最近对什么感兴趣,也总能发现一些有趣的新东西。这让我想到有一些朋友总会兴致勃勃的过来说,嘿,给你推荐个东西,你肯定喜欢,光是听到这句话我好像就开心起来,也许这就是我喜欢这个功能的原因。

❹ qq音乐的每日推荐算法

这就是amazon发明的“喜欢这个商品的人,也喜欢某某”算法,其核心是数学中的“多维空间中两个向量夹角的余弦公式”。

例子:3首歌放在那里,《最炫民族风》,《晴天》,《Hero》;A君,收藏了《最炫民族风》,而遇到《晴天》,《Hero》则总是跳过;B君,经常单曲循环《最炫民族风》,《晴天》会播放完,《Hero》则拉黑了;C君,拉黑了《最炫民族风》,而《晴天》《Hero》都收藏了;我们都看出来了,A,B二位品味接近,C和他们很不一样。

那么问题来了,说A,B相似,到底有多相似,如何量化?我们把三首歌想象成三维空间的三个维度,《最炫民族风》是x轴,《晴天》是y轴,《Hero》是z轴,对每首歌的喜欢程度即该维度上的坐标,

并且对喜欢程度做量化(比如: 单曲循环=5, 分享=4, 收藏=3, 主动播放=2 , 听完=1, 跳过=-1 , 拉黑=-5 )。那么每个人的总体口味就是一个向量,A君是 (3,-1,-1),B君是(5,1,-5),C君是(-5,3,3)。

我们可以用向量夹角的余弦值来表示两个向量的相似程度, 0度角(表示两人完全一致)的余弦是1, 180%角(表示两人截然相反)的余弦是-1。根据余弦公式, 夹角余弦= 向量点积/ (向量长度的叉积) = ( x1x2 + y1y2 + z1z2) / ( 跟号(x1平方+y1平方+z1平方 ) x 跟号(x2平方+y2平方+z2平方 ) )可见 A君B君夹角的余弦是0.81 , A君C君夹角的余弦是 -0.97 。


❺ 网易云音乐个性化推荐是一个怎样的技术

在每日歌曲推荐页面,网易云音乐比较简单的解释了个性化推荐的运作机制,比如播放、红心、收藏等用户行为,都会对推荐算法产生影响,一方面表明算法机制,另一方面也鼓励用户多听歌、多动手,让产品更懂你的前提是用户行为足够丰富。另外,在早前网易云音乐的官方新闻中,也可以看到,海量UGC内容结合协同过滤、语义分析、操作分析技术,这些都是个性化推荐的运行机制。而综合来看,基于音乐与基于用户协同过滤的两种推荐方式,就是个性化推荐的主力。

❻ 阅读、电影和音乐的推荐算法,哪一个更难做

“阅读、电影和音乐的推荐算法,哪一个更难做?为什么?”关于这一问题,小编从诸多网友的回复中为你筛选了最用心、最高赞的回答!快来看看吧~

来看看网名为“幸运的ZLT0502”的网友是怎么说的:

电影---音乐----阅读!从我的经验来看,阅读是最难做到的,其次是音乐,最简单的就是电影。当然,是在有很多数据的前提下。从几个领域的特点来看:1.电影的item数量相对较少,好的电影有很长的生命周期,加上电影社区的用户行为,视频网站或预订网站,都很好获得,所以特别适合合作过滤。即使这不是一部大热门电影,你也可以根据导演、类型、明星等制作内容。这些都是结构化的信息,所以没有难度。音乐的item比电影要多一些,生命周期也非常不同,但它也可以用于基于用户行为的协同过滤。该算法如何表达和更新用户的兴趣?如何根据兴趣标签计算推荐结果?至少我没有看到特别成功的推荐阅读应用程序。算法上,都各有难度,但阅读类的,由于分类太多,在算法上自然要更加复杂。

来看看网名为“派网友”的网友是怎么说的:

个人认为无论是基于用户行为(协同过滤),还是基于内容相似度的推荐算法,难度从高到底都依次是:音乐-阅读-电影。

对于ID为“楼船吹笛雨潇潇”网友的精彩回答,大家纷纷点赞支持,他是这么说的:

我觉得是各有所难,并不能说哪个难,哪个容易。推荐的成功率:公共决策对推荐的影响:判断价值的建议:三者各有难度,但是个人在长期的习惯中可以对其中一种或者多种情景中加以选择和实践,但这也不是一蹴而就的事情,慢慢来吧。

你赞同哪位网友的观点呢?

❼ 网易云音乐的歌单推荐算法是怎样的

1)冷启动的时候基于热度的推荐会比较多,推荐流行热点音乐总是不会错的。
2)在用户使用一段时间,用户行为达到一定样本量以后,程序开始通过内容和社交关系逻辑产出内容,并且与热门内容按照一定比例推送给用户。
用户所有的行为(包括下载/喜欢,评论,播放完成度,播放次数等等)都会以不同的权重呈现在后续的推荐逻辑中。

❽ 网易云音乐的推荐算法比QQ音乐好一些吗

QQ音乐好

❾ 网易云的音乐推荐算法适用于其他软件吗

网易云音乐推荐算法不适用于其他软件。

很多人在使用网易云音乐时,会感觉推荐音乐很好,质量高听起来舒服。于是到网上去搜索,发现了几种推荐方法。这时候我们要注意一个问题,那就是网上言论并不是公司内部答案,大多数内容都是以相似度出发,用两三首歌曲举例。事实上,一个平台有众多歌曲,一个流行歌手少说也有几十首歌曲,算法并没有想象中那么简单。就算固定答案,随着版本更新,也会出现许多不同算法。

3、并非万能

在大多数情况下,推荐算法都可以拿捏住用户心思,毕竟平台拥有大数据,辨别用户想法并不难。可不是所有人,都拥有同样一种想法,有人觉得平台推荐内容准确,有人觉得推荐会造成麻烦。即使优化再完美,也无法满足所有人。

❿ 网易云音乐的歌单推荐算法是怎样的

“商品推荐”系统的算法( Collaborative filtering )分两大类,第一类,以人为本,先找到与你相似的人,然后看看他们买了什么你没有买的东西。这类算法最经典的实现就是“多维空间中两个向量夹角的余弦公式”;第二类, 以物为本直接建立各商品之间的相似度关系矩阵。这类算法中最经典是'斜率=1' (Slope One)。amazon发明了暴力简化的第二类算法,‘买了这个商品的人,也买了xxx’。我们先来看看第一类,最大的问题如何判断并量化两人的相似性,思路是这样 -- 例子:有3首歌放在那里,《最炫民族风》,《晴天》,《Hero》。A君,收藏了《最炫民族风》,而遇到《晴天》,《Hero》则总是跳过;B君,经常单曲循环《最炫民族风》,《晴天》会播放完,《Hero》则拉黑了C君,拉黑了《最炫民族风》,而《晴天》《Hero》都收藏了。我们都看出来了,A,B二位品味接近,C和他们很不一样。那么问题来了,说A,B相似,到底有多相似,如何量化?我们把三首歌想象成三维空间的三个维度,《最炫民族风》是x轴,《晴天》是y轴,《Hero》是z轴,对每首歌的喜欢程度即该维度上的坐标,并且对喜欢程度做量化(比如: 单曲循环=5, 分享=4, 收藏=3, 主动播放=2 , 听完=1, 跳过=-1 , 拉黑=-5 )。那么每个人的总体口味就是一个向量,A君是 (3,-1,-1),B君是(5,1,-5),C君是(-5,3,3)。 (抱歉我不会画立体图)我们可以用向量夹角的余弦值来表示两个向量的相似程度, 0度角(表示两人完全一致)的余弦是1, 180%角(表示两人截然相反)的余弦是-1。根据余弦公式, 夹角余弦 = 向量点积/ (向量长度的叉积) = ( x1x2 + y1y2 + z1z2) / ( 跟号(x1平方+y1平方+z1平方 ) x 跟号(x2平方+y2平方+z2平方 ) )可见 A君B君夹角的余弦是0.81 , A君C君夹角的余弦是 -0.97 ,公式诚不欺我也。以上是三维(三首歌)的情况,如法炮制N维N首歌的情况都是一样的。假设我们选取一百首种子歌曲,算出了各君之间的相似值,那么当我们发现A君还喜欢听的《小苹果》B君居然没听过,相信大家都知道该怎么和B君推荐了吧。

阅读全文

与推荐算法实践音乐歌单相关的资料

热点内容
汽车小压缩机拆解 浏览:825
云桌面卡是因为服务器的原因吗 浏览:377
qd123压缩机 浏览:969
pn532读取加密门禁卡 浏览:85
win10文件夹属性里无法加密 浏览:34
比特币加密的条件 浏览:848
求购现成影视app源码 浏览:572
wdsecurity加密版 浏览:813
云服务器和云丰云 浏览:188
服务器如何设置独立ip 浏览:857
tar命令打包文件夹 浏览:1000
删除linux用户和组 浏览:548
小米的程序员都用什么笔记本 浏览:703
字节三面算法题 浏览:971
服务器保护有什么好处 浏览:894
全部下载完后进行统一解压 浏览:393
远嫁的程序员妈妈 浏览:555
1024程序员节安全攻防挑战赛 浏览:786
怎么解除txt加密 浏览:772
javahttp流 浏览:656