‘壹’ 粒子群优化算法的PSO
演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。
不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值。 这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。
我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。
‘贰’ 粒子群优化算法和多模态优化算法有什么区别
摘 要:,粒子群算法据自己的速度来决定搜索过程,只有最优的粒子把信息给予其他的粒子,整个搜索更新过程是跟随当前最优解的过程,所有的粒子还可以更快的收敛于最优解。由于微粒群算法简单,容易实现,与其它求解约束优化问题的方法相比较,具有一定的优势。实验结果表明,对于无约束的非线性求解,粒子群算法表现出较好的收敛性和健壮性。
关键词:粒子群算法;函数优化;极值寻优
0 引言
非线性方程的求根问题是多年来数学家努力解决的问题之一。长期以来,人们已找出多种用于解决方程求根的方法,例如牛顿法、弦割法、抛物线法等。然而,很多传统的方法仅能运用于相应的小的问题集,推广性相对较差。对于一个现实世界中的优化问题,必须尝试很多不同的方法,甚至要发明相应的新的方法来解决,这显然是不现实的。我们需要另外的方法来克服这样的困难。
粒子群算法是一种现代启发式算法,具有推广性强、鲁棒性高等特点[1]。该算法具有群体智能、内在并行性、迭代格式简单、可快速收敛到最优解所在区域等优点[2]。本文采用粒子群算法,对函数的极值进行寻优计算,实现了对函数的极值求解。
1 粒子群算法
1.1 基本原理
粒子群算法(PSO)是一种基于群体的随机优化技术,它的思想来源于对鸟群捕食行为的研究与模拟。粒子群算法与其它基于群体的进化算法相类似,选用“群体”和“进化”的概念,按照个体的适应度值进行操作,也是一种基于迭代的寻优技术。区别在于,粒子群算法中没有交叉变异等进化算子,而是将每个个体看作搜索空间中的微粒,每个微粒没有重量和体积,但都有自己的位置向量、速度向量和适应度值。所有微粒以一定的速度飞行于搜索空间中,其中的飞行速度是由个体飞行经验和群体的飞行经验动态调整,通过追踪当前搜索到的最优值来寻找全局最优值。
1.2 参数选择
粒子群算法需要修改的参数很少,但对参数的选择却十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要对算法中的种群规模、迭代次数和粒子速度的选择方法进行了详细分析,利用统计方法对约束优化问题的求解论证了这 3 个参数对算法性能的影响,并给出了具有一定通用性的3 个参数选择原则[4]。
种群规模:通常根据待优化问题的复杂程度确定。
最大速度:决定粒子在一次迭代中的最大移动距离,通常设定为不超过粒子的范围宽度。
加速常数:加速常数c1和c2通常是由经验值决定的,它代表粒子向pbest和gbest靠拢的加速项的权重。一般取值为:c1=c2=2。
中止条件:达到最大迭代次数或得到最小误差要求,通常要由具体问题确定。
惯性权重:惯性权重能够针对待优化问题调整算法的局部和全局搜索能力。当该值较大时有利于全局搜索,较小时有利于局部搜索。所以通常在算法开始时设置较大的惯性权重,以便扩大搜索范围、加快收敛。而随着迭代次数的增加逐渐减小惯性权重的值,使其进行精确搜索,避免跳过最优解。
1.3 算法步骤
PSO算法步骤如下:
Step1:初始化一个规模为 m 的粒子群,设定初始位置和速度。
初始化过程如下:
(1)设定群体规模m;
(2)对任意的i,s,在[-xmax, xmax]内均匀分布,产生初始位置xis;
(3)对任意的i,s,在[-vmax, vmax]内均匀分布,产生速度vis;
(4)对任意的i,设yi=xi,保存个体。
Step2:计算每个粒子的适应度值。
Step3:对每个粒子的适应度值和得到过的最好位置pis的适应度值进行比较,若相对较好,则将其作为当前的最好位置。
Step4:对每个粒子的适应度值和全局得到过的最好位置pgs的适应度值进行比较,若相对较好,则将其作为当前的全局最好位置。
Step5:分别对粒子的所在位置和速度进行更新。
Step6:如果满足终止条件,则输出最优解;否则,返回Step2。
1.4 粒子群算法函数极值求解
粒子群算法优化是计算机智能领域,除蚁群算法外的另一种基于群体智能的优化算法。粒子群算法是一种群体智能的烟花计算技术。与遗传算法相比,粒子群算法没有遗传算法的选择(Selection)、交叉(Crossover)、变异(Mutation)等操作,而是通过粒子在解空间追随最优的粒子进行搜索。
粒子群算法流程如图所示:
粒子群为由n个粒子组成的种群X = (X1,X2,X3,…Xn).
第i个粒子表示一个D维向量Xi = (X1,X2,X3,…XD)T.
第i个粒子的速度为Vi = (Vi1,Vi2,Vi3,…ViD)T.
个体极值为Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局极值为Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新为,式中,c1和c2为其两个学习因子的参数值;r1和r2为其两个随机值。
位置更新为.
2 粒子群算法应用举例
2.1 实验问题
这是一个无约束函数的极值寻优,对于Ackley函数,
.
其中c1=20,e=2. 71289。
2.2 实验步骤
对于Ackley函数图形,选取一个凹峰进行分析,程序运行结果如图所示。
图1 Ackley函数图形
可以看出,选取区间内的Ackley函数图形只有一个极小值点。因此,对于该段函数进行寻优,不会陷入局部最小。采用粒子群算法对该函数进行极值寻优。
首先,进行初始化粒子群,编写的MATLAB代码如下:
% 初始化种群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 产生随机个体
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存产生的随机个体
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 适应度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序运行后所产生的个体值为:
表1 函数个体值
然后,根据待寻优的目标函数,计算适应度值。待寻优的目标函数为:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根据每一组个体,通过目标函数,得到的适应度值为:
表2 函数适应度值
搜索个体最优极值,即搜索最小的适应度值,我们可利用MATLAB绘图将所有个体的适应度值绘成plot图查看相对最小值。
图3 函数适应度plot图
从图中可看出,当个体=20时,得到相对最小值,在程序中,将其保存下来。
之后进行迭代寻优,直到满足终止条件。
最后,得到的最优值为:
图4 MATLAB运行得到结果
迭代后得到的运行结果图如下:
图5 迭代曲线图
2.3 实验结果
通过图5中可看出,该函数的寻优是收敛的,最优个体和实际情况较吻合。因此,采用粒子群算法进行函数极值寻优,快速、准确且鲁棒性较好。
3 结论
本文阐述了粒子群算法求解最化问题的过程,实验结果表明了该算法对于无约束问题的可行性。与其它的进化算法相比,粒子群算法容易理解、编码简单、容易实现。但是参数的设置对于该算法的性能却有很大的影响,例如控制收敛,避免早熟等。在未来的工作中,将努力于将其它计算智能算法或其它优化技术应用于粒子群算法中,以进一步提高粒子群算法的性能。
‘叁’ 粒子群优化的算法原理
PSO算法是基于群体的,根据对环境的适应度将群体中的个体移动到好的区域。然而它不对个体使用演化算子,而是将每个个体看作是D维搜索空间中的一个没有体积的微粒(点),在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。第i个微粒表示为Xi = (xi1, xi2, …, xiD),它经历过的最好位置(有最好的适应值)记为Pi = (pi1, pi2, …, piD),也称为pbest。在群体所有微粒经历过的最好位置的索引号用符号g表示,即Pg,也称为gbest。微粒i的速度用Vi = (vi1, vi2, …, viD)表示。对每一代,它的第d维(1 ≤ d ≤ D)根据如下方程进行变化:
vid = w∙vid+c1∙rand()∙(pid-xid)+c2∙Rand()∙(pgd-xid) (1a)
xid = xid+vid
其中w为惯性权重(inertia weight),c1和c2为加速常数(acceleration constants),rand()和Rand()为两个在[0,1]范围里变化的随机值。
此外,微粒的速度Vi被一个最大速度Vmax所限制。如果当前对微粒的加速导致它的在某维的速度vid超过该维的最大速度vmax,d,则该维的速度被限制为该维最大速度vmax,d。
对公式(1a),第一部分为微粒先前行为的惯性,第二部分为“认知(cognition)”部分,表示微粒本身的思考;第三部分为“社会(social)”部分,表示微粒间的信息共享与相互合作。
“认知”部分可以由Thorndike的效应法则(law of effect)所解释,即一个得到加强的随机行为在将来更有可能出现。这里的行为即“认知”,并假设获得正确的知识是得到加强的,这样的一个模型假定微粒被激励着去减小误差。
“社会”部分可以由Banra的替代强化(vicarious reinforcement)所解释。根据该理论的预期,当观察者观察到一个模型在加强某一行为时,将增加它实行该行为的几率。即微粒本身的认知将被其它微粒所模仿。
PSO算法使用如下心理学假设:在寻求一致的认知过程中,个体往往记住自身的信念,并同时考虑同事们的信念。当其察觉同事的信念较好的时候,将进行适应性地调整。 a). 初始化一群微粒(群体规模为m),包括随机的位置和速度;
b). 评价每个微粒的适应度;
c). 对每个微粒,将它的适应值和它经历过的最好位置pbest的作比较,如果较好,则将其作为当前的最好位置pbest;
d). 对每个微粒,将它的适应值和全局所经历最好位置gbest的作比较,如果较好,则重新设置gbest的索引号;
e). 根据方程(1)变化微粒的速度和位置;
f). 如未达到结束条件(通常为足够好的适应值或达到一个预设最大代数Gmax),回到b)。
‘肆’ 关于粒子群算法的目标函数优化,优化函数如下图
function main()
clc;clear all;close all;
tic; %程序运行计时
E0=0.001; %允许误差
MaxNum=100; %粒子最大迭代次数
narvs=1; %目标函数的自变量个数
particlesize=30; %粒子群规模
c1=2; %每个粒子的个体学习因子,也称为加速常数
c2=2; %每个粒子的社会学习因子,也称为加速常数
w=0.6; %惯性因子
vmax=0.8; %粒子的最大飞翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飞翔速度
%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,
%目标函数是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定义适应度函数如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定义的适应度函数会使程序运行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
‘伍’ python有没有粒子群算法包
scikit-opt调研过很多粒子群算法包,这个是比较好用的了
定义你的目标函数
defdemo_func(x):
x1,x2,x3=x
returnx1**2+(x2-0.05)**2+x3**2
调用算法进行优化求解
pso=PSO(func=demo_func,dim=3)
fitness=pso.fit()
‘陆’ 粒子群算法的优缺点
优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。
缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。
(6)python粒子群优化算法扩展阅读:
注意事项:
基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。
对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。
‘柒’ 粒子群优化算法的参数设置
从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解,粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20–40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可是设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.
另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)。
‘捌’ 粒子群优化的算法参数
PSO参数包括:群体规模m,惯性权重w,加速常数c1和c2,最大速度Vmax,最大代数Gmax,解空间[Xmin Xmax]。
Vmax决定在当前位置与最好位置之间的区域的分辨率(或精度)。如果Vmax太高,微粒可能会飞过好解,如果Vmax太小,微粒不能进行足够的探索,导致陷入局部优值。该限制有三个目的:防止计算溢出;实现人工学习和态度转变;决定问题空间搜索的粒度。
惯性权重w使微粒保持运动的惯性,使其有扩展搜索空间的趋势,有能力探索新的区域。
加速常数c1和c2代表将每个微粒推向pbest和gbest位置的统计加速项的权重。低的值允许微粒在被拉回来之前可以在目标区域外徘徊,而高的值导致微粒突然的冲向或者越过目标区域。
如果没有后两部分,即c1 = c2 = 0,微粒将一直以当前的速度飞行,直到到达边界。由于它只能搜索有限的区域,将很难找到好的解。
如果没有第一部分,即w = 0,则速度只取决于微粒当前的位置和它们历史最好位置pbest和gbest,速度本身没有记忆性。假设一个微粒位于全局最好位置,它将保持静止。而其它微粒则飞向它本身最好位置pbest和全局最好位置gbest的加权中心。在这种条件下,微粒群将统计的收缩到当前的全局最好位置,更象一个局部算法。
在加上第一部分后,微粒有扩展搜索空间的趋势,即第一部分有全局搜索的能力。这也使得w的作用为针对不同的搜索问题,调整算法全局和局部搜索能力的平衡。
如果没有第二部分,即c1 = 0,则微粒没有认知能力,也就是“只有社会(social-only)”的模型。在微粒的相互作用下,有能力到达新的搜索空间。它的收敛速度比标准版本更快,但是对复杂问题,比标准版本更容易陷入局部优值点。
如果没有第三部分,即c2 = 0,则微粒之间没有社会信息共享,也就是“只有认知(cognition-only)”的模型。因为个体间没有交互,一个规模为m的群体等价于m个单个微粒的运行。因而得到解的几率非常小。
‘玖’ 学习多目标优化需要掌握哪些python知识
多目标优化
目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-
objective Optimization Problem,
SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem,
MOP)。不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。
多目标优化算法归结起来有传统优化算法和智能优化算法两大类。
1. 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。
2. 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。
Pareto最优解:
若x*∈C*,且在C中不存在比x更优越的解x,则称x*是多目标最优化模型式的Pareto最优解,又称为有效解。
一般来说,多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。传统优化技术一般每次能得到Pareo解集中的一个,而
用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解。它是由那些任一个目标函数值的提高都必须以牺牲其
他目标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。
Pareto有效(最优)解非劣解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比集合之外的解好。
求解多目标优化问题最有名的就是NSGA-II了,是多目标遗传算法,但其对解的选择过程可以用在其他优化算法上,例如粒子群,蜂群等等。这里简单介绍一下NSGA-II的选择算法。主要包含三个部分:
1. 快速非支配排序
要先讲一下支配的概念,对于解X1和X2,如果X1对应的所有目标函数都不比X2大(最小问题),且存在一个目标值比X2小,则X2被X1支配。
快速非支配排序是一个循环分级过程:首先找出群体中的非支配解集,记为第一非支配层,irank=1(irank是个体i的非支配值),将其从群体中除去,继续寻找群体中的非支配解集,然后irank=2。
2. 个体拥挤距离
为了使计算结果在目标空间比较均匀的分布,维持种群多样性,对每个个体计算拥挤距离,选择拥挤距离大的个体,拥挤距离的定义为:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1个个体的第m目标函数值,fmaxm 和 fminm是集合中第m个目标函数的最大和最小值。
3. 精英策略选择
精英策略就是保留父代中的优良个体直接进入子代,防止获得的Pareto最优解丢失。将第t次产生的子代种群和父代种群合并,然后对合并后的新种群进行非支配排序,然后按照非支配顺序添加到规模为N的种群中作为新的父代。