① python作业用穷举法找出阿姆斯特朗数
#!/usr/bin/envpython
defcalc():
foriinxrange(100,10000000):
sum=0
n=len(str(i))
temp=i
whiletemp>0:
digit=temp%10
sum+=digit**n
temp//=10
ifi==sum:
printi
if__name__=='__main__':
calc()
② 用Python语言解决
多分支解决。
③ Python问题 运用穷举法
7744
首先,车号的模式是XXYY
其次,确定整数的范围:32-99
最后,确认出来这个整数是88,也就是车号是7744
④ python中有哪些简单的算法
你好:
跟你详细说一下python的常用8大算法:
1、插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
2、希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
3、冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
4、快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5、直接选择排序
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
6、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
7、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
8、基数排序
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
⑤ Python中,我想要穷举三位数到四位数得数,我知道穷举空间是100到10000,要用什么语句呢!
range(100, 1000)
⑥ python穷举法和二分法有哪些不同
穷举就是从第一个挨个儿尝试,二分就是从中间开始尝试,速度当然比穷举快了很多。
⑦ Python中的枚举法,随机法和二分法的优点是什么
摘要 枚举法的优缺点主要是:优点由于枚举法一般是现实生活中问题的“直译”,因此比较直观,易于理解;枚举法建立在考察大量状态、甚至是穷举所有状态的基础上,所以算法的正确性比较容易证明。
⑧ 有哪些用 Python 语言讲算法和数据结构的书
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
⑨ 编写一个函数,判断三个数是否能构成一个三角形,python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
a = input()
b = input()
c = input()
if (a + b > c and a + c > b and b + c > a and abs(a - b) < c and abs(a - c) < b and abs(b - c) < a):
print "能组成三角形"
else:
print "不能组成三角形"
程序条件时根据三角形原理两边之和大于第三边,两边之差小于第三边的规则判断。
例如程序运行时分别输入2、3、4,程序输出"能组成三角形"。
(9)python实现穷举的算法扩展阅读
1、python输入用法介绍:
python输入时使用input( )函数,这个函数只能接收“数字”的输入,返回所输入的数字的类型( int, float )。
示例:
a = input("input a: ")
print(a,type(a))
2、python abs函数介绍
abs() 函数返回数字的绝对值,语法是:abs( x ),函数返回x(数字)的绝对值。