A. 试比较对称加密算法与非对称加密算法在应用中的优缺点传统密码体制与公钥密码体制的优缺点
1、对称加密算法
优点
加解密的高速度和使用长密钥时的难破解性。
缺点
对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去。如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。
2、非对称加密算法
优点
非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。
缺点
算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。
3、传统密码体制
优点
由于DES加密速度快,适合加密较长的报文。
缺点
通用密钥密码体制的加密密钥和解密密钥是通用的,即发送方和接收方使用同样密钥的密码体制。
4、公钥密码体制
优点
RSA算法的加密密钥和加密算法分开,使得密钥分配更为方便。
RSA算法解决了大量网络用户密钥管理的难题。
缺点
RSA的密钥很长,加密速度慢。
(1)混沌与传统加密的区别扩展阅读
W.Diffie和M.Hellman 1976年在IEEE Trans.on Information刊物上发表了“ New Direction in Cryptography”文章,提出了“非对称密码体制即公开密钥密码体制”的概念,开创了密码学研究的新方向。
在通用密码体制中,得到广泛应用的典型算法是DES算法。DES是由“转置”方式和“换字”方式合成的通用密钥算法,先将明文(或密文)按64位分组,再逐组将64位的明文(或密文),用56位(另有8位奇偶校验位,共64位)的密钥,经过各种复杂的计算和变换,生成64位的密文(或明文),该算法属于分组密码算法。
B. 传统密码和非对称密码各自的优势
密码算法可以看作是一个复杂的函数变换,C = F M, Key ),C代表密文,即加密后得到的字符序列,M代表明文即待加密的字符序列,Key表示密钥,是秘密选定的一个字符序列。密码学的一个原则是“一切秘密寓于密钥之中”,算法可以公开。当加密完成后,可以将密文通过不安全渠道送给收信人,只有拥有解密密钥的收信人可以对密文进行解密即反变换得到明文,密钥的传递必须通过安全渠道。目前流行的密码算法主要有DES,RSA,IDEA,DSA等,还有新近的Liu氏算法,是由华人刘尊全发明的。密码算法可分为传统密码算法和现代密码算法,传统密码算法的特点是加密和解密必须是同一密钥,如DES和IDEA等;现代密码算法将加密密钥与解密密钥区分开来,且由加密密钥事实上求不出解密密钥。这样一个实体只需公开其加密密钥(称公钥,解密密钥称私钥)即可,实体之间就可以进行秘密通信,而不象传统密码算法似的在通信之前先得秘密传递密钥,其中妙处一想便知。因此传统密码算法又称对称密码算法(Symmetric Cryptographic Algorithms ),现代密码算法称非对称密码算法或公钥密码算法( Public-Key Cryptographic Algorithms ),是由Diffie 和Hellman首先在1976年的美国国家计算机会议上提出这一概念的。按照加密时对明文的处理方式,密码算法又可分为分组密码算法和序列密码算法。分组密码算法是把密文分成等长的组分别加密,序列密码算法是一个比特一个比特地处理,用已知的密钥随机序列与明文按位异或。当然当分组长度为1时,二者混为一谈。
C. 混沌算法是什么
混沌算法是指混沌序列加密算法 。该算法首先用单向Hash函数把密钥散列为混沌映射的迭代初值 ,混沌序列经过数次迭代后才开始取用 ;然后将迭代生成的混沌序列值映射为ASCII码后与地图数据逐字节进行异或运算,考虑到实际计算中的有限精度效应 ,随步长改变混沌映射参数,采用实际的地图数据 。
D. 为什么混沌密码不依赖于算法复杂性
因为混沌系统具有很高的复杂。传统的加密方法依赖算法的复杂性,但随着计算机运算速度的提高,加密算法的复杂性也水涨船高,而混沌密码和量子密码是两种不依赖于算法复杂度的方法。
E. 非对称加密和对称加密的区别
非对称加密和对称加密在加密和解密过程、加密解密速度、传输的安全性上都有所不同,具体介绍如下:
1、加密和解密过程不同
对称加密过程和解密过程使用的同一个密钥,加密过程相当于用原文+密钥可以传输出密文,同时解密过程用密文-密钥可以推导出原文。但非对称加密采用了两个密钥,一般使用公钥进行加密,使用私钥进行解密。
2、加密解密速度不同
对称加密解密的速度比较快,适合数据比较长时的使用。非对称加密和解密花费的时间长、速度相对较慢,只适合对少量数据的使用。
3、传输的安全性不同
对称加密的过程中无法确保密钥被安全传递,密文在传输过程中是可能被第三方截获的,如果密码本也被第三方截获,则传输的密码信息将被第三方破获,安全性相对较低。
非对称加密算法中私钥是基于不同的算法生成不同的随机数,私钥通过一定的加密算法推导出公钥,但私钥到公钥的推导过程是单向的,也就是说公钥无法反推导出私钥。所以安全性较高。
F. 软件加密和传统加密有什么区别,那个加密软件实用呢
文件夹加密超级大师是目前使用人数最多的。 文件夹加密超级大师有7年的历史了,在华军,天空,多特等大的下载站一直下载量第一。 你可以网络搜索一下, 第一个就是免费的下载地址。
G. 什么是传统加密什么是公钥加密
传统的加密就是对电脑中的文档进行加密保护,通过加密文档类型,使得对应的文档文件自动加密,企业为了保护数据安全通常会这么做的,比如说用域之盾去保护文档的安全,加密后的文档类型,在生成新的文件之后也是会被自动加密的,而且经过文件加密在企业局域网内可以正常打开,如果是私自外发的话在终端电脑打开都是乱码的情况了。
H. 加密混沌石 和 爱斯林 区别
两者不是同一个人物,但是在同一个游戏中。
就像加密混沌石它是一种通货物品,可以像混沌石一样重置稀有物品,并给予随机的加密词缀。 它可以从背叛者遭遇战中获取,也可以在游戏中任何地方以稀有掉落的形式出现。混沌石的作用,首先,复制镜子、所有带人脸的石头、还有加宝石质量的GCP一般都不要用,那些价值都很高,尤其是镜子,值100美元,用了就哭吧。埃斯林是可以通过添加西游属性升级的。
I. 混沌密码学的分类和特征
混沌流密码研究
胡汉平1 董占球2
(华中科技大学图像识别与人工智能研究所/图像信息处理与智能控制教育部重点实验室
中国科学院研究生院,)
摘要:在数字化混沌系统和基于混沌同步的保密通信系统的研究中存在一些亟待解决的重要问题:数字化混沌的特性退化,混沌时间序列分析对混沌系统安全性的威胁等,已严重影响着混沌流密码系统的实用化进程。为此,提出了通过变换的误差补偿方法克服数字混沌的特性退化问题;构建混沌编码模型完成对混沌序列的编码、采样,由此得到满足均匀、独立分布的驱动序列;引入非线性变换,以抵抗对混沌流密码系统安全性的威胁。
关键词:混沌流密码系统;特性退化;非线性变换;混沌时间序列分析
1. 引言
随着以计算机技术和网络通信技术为代表的信息技术的不断发展和迅速普及,通信保密问题日益突出。信息安全问题已经成为阻碍经济持续稳定发展和威胁国家安全的一个重要问题。众所周知,密码是信息安全的核心,设计具有自主知识产权的新型高性能的密码体制是目前最亟待解决的重要问题。
混沌是确定性系统中的一种貌似随机的运动。混沌系统都具有如下基本特性:确定性、有界性、对初始条件的敏感性、拓扑传递性和混合性、宽带性、快速衰减的自相关性、长期不可预测性和伪随机性[1],正是因为混沌系统所具有的这些基本特性恰好能够满足保密通信及密码学的基本要求:混沌动力学方程的确定性保证了通信双方在收发过程或加解密过程中的可靠性;混沌轨道的发散特性及对初始条件的敏感性正好满足Shannon提出的密码系统设计的第一个基本原则――扩散原则;混沌吸引子的拓扑传递性与混合性,以及对系统参数的敏感性正好满足Shannon提出的密码系统设计的第二个基本原则――混淆原则;混沌输出信号的宽带功率谱和快速衰减的自相关特性是对抗频谱分析和相关分析的有利保障,而混沌行为的长期不可预测性是混沌保密通信安全性的根本保障等。因此,自1989年R.Mathews, D.Wheeler, L.M.Pecora和Carroll等人首次把混沌理论使用到序列密码及保密通信理论以来,数字化混沌密码系统和基于混沌同步的保密通信系统的研究已引起了相关学者的高度关注[2]。虽然这些年的研究取得了许多可喜的进展,但仍存在一些重要的基本问题尚待解决。
1.1 数字混沌的特性退化问题
在数字化的混沌密码系统的研究方向上,国内外学者已经提出了一些比较好的数字混沌密码系统及其相应的密码分析方法:文献[3]提出基于帐篷映射的加解密算法;文献[4]1998年Fridrich通过定义一种改进的二维螺旋或方形混沌映射来构造一种新的密码算法;文献[5,6]提出把混沌吸引域划分为不同的子域,每一子域与明文一一对应,把混沌轨道进入明文所对应的混沌吸引域子域的迭代次数作为其密文;在文献[7]中,作者把一个字节的不同比特与不同的混沌吸引子联系起来实现加/解密;文献[8]较为详细地讨论了通过混沌构造S盒来设计分组密码算法的方法;文献[9,10]给出了混沌伪随机数产生的产生方法;英国的SafeChaos公司将混沌用于公钥密码体制,推出了CHAOS+Public Key (v4.23)系统[11];等等。但是,这些数字混沌系统一般都是在计算机或其它有限精度的器件上实现的,由此可以将混沌序列生成器归结为有限自动机来描述,在这种条件下所生成的混沌序列会出现特性退化:短周期、强相关以及小线性复杂度等[12-15],即数字混沌系统与理想的实值混沌系统在动力学特性上存在相当大的差异。它所带来的混沌密码系统安全的不稳定性是困扰混沌密码系统进入实用的重要原因[16]。尽管有人指出增加精度可以减小这一问题所造成的后果,但其代价显然是非常大的。
1.2 对混沌流密码系统的相空间重构分析
目前,对混沌保密通信系统的分析工作才刚刚起步,主要方法有:统计分析(如周期及概率分布分析和相关分析等)、频谱分析(包括傅立叶变换和小波变换等)和混沌时间序列分析[17]。前两者都是传统的信号分析手段,在此就不再赘述,而混沌时间序列是近20年来发展的一门扎根于非线性动力学和数值计算的新兴学科方向。
从时间序列出发研究混沌系统,始于Packard等人于1980年提出的相空间重构(Phase Space Reconstruction)理论。众所周知,对于决定混沌系统长期演化的任一变量的时间演化,均包含了混沌系统所有变量长期演化的信息(亦称为全息性),这是由混沌系统的非线性特点决定的,这也是混沌系统难以分解和分析的主要原因。因此,理论上可以通过决定混沌系统长期演化的任一单变量的时间序列来研究混沌系统的动力学行为,这就是混沌时间序列分析的基本思想。
混沌时间序列分析的目的是通过对混沌系统产生的时间序列进行相空间重构分析,利用数值计算估计出混沌系统的宏观特征量,从而为进一步的非线性预测[18](包括基于神经网络或模糊理论的预测模型)提供模型参数,这基本上也就是目前对混沌保密通信系统进行分析或评价的主要思路。描述混沌吸引子的宏观特征量主要有:Lyapunov指数(系统的特征指数)、Kolmogorov熵(动力系统的混沌水平)和关联维(系统复杂度的估计)等[17]。而这些混沌特征量的估计和Poincare截面法都是以相空间重构以及F.Takens的嵌入定理为基础的,由此可见相空间重构理论在混沌时间序列分析中的重大意义。
1.3 对混沌流密码系统的符号动力学分析
我们在以往的实验分析工作中都是针对混沌密码系统的统计学特性进行研究的,如周期性、平衡性、线性相关性、线性复杂度、混淆和扩散特性等,即使涉及到非线性也是从混沌时间序列分析(如相图分析或分数维估计等)的角度出发进行研究的。然而,符号动力学分析表明,混沌密码系统的非线性动力学分析同样非常主要,基于实用符号动力学的分析可能会很快暴露出混沌编码模型的动力学特性。基于Gray码序数和单峰映射的符号动力学之间的关系,文献[20]提出了一种不依赖单峰映射的初始条件而直接从单峰映射产生的二值符号序列来进行参数估计的方法。分析结果表明,基于一般混沌编码模型的密码系统并不如人们想象的那么安全,通过对其产生的一段符号序列进行分析,甚至能以较高的精度很快的估计出其根密钥(系统参数或初始条件)。
上述结论虽然是针对以单峰映射为主的混沌编码模型进行的分析,但是,混沌流密码方案的安全性不应该取决于其中采用的混沌系统,而应该取决于方案本身,而且单峰映射的低计算复杂度对于实际应用仍是非常有吸引力的。因此,我们认为,如果希望利用混沌编码模型来设计更为安全的密码系统,必须在混沌编码模型产生的符号序列作为伪随机序列输出(如用作密钥流或扩频码)之前引入某种扰乱策略,这种扰乱策略实质上相当于密码系统中的非线性变换。
该非线性变换不应影响混沌系统本身的特性,因为向混沌系统的内部注入扰动会将原自治混沌系统变为了非自治混沌系统,但当自治混沌系统变为非自治混沌系统之后,这些良好特性可能会随之发生较大的变化,且不为设计者所控制。这样有可能引入原本没有的安全隐患,甚至会为分析者大开方便之门。
上述非线性变换还应该能被混沌编码模型产生的符号序列所改变。否则,分析者很容易通过输出的伪随机序列恢复出原符号序列,并利用符号动力学分析方法估计出混沌编码模型的系统参数和初始条件。因此,非线性变换的构造就成了设计高安全性数字混沌密码系统的关键之一。
2. 混沌流密码系统的总体方案
为克服上述问题,我们提出了如下的混沌流密码系统的总体方案,如图1所示:
在该方案中,首先利用一个混沌映射f产生混沌序列xi,再通过编码C产生符号序列ai,将所得符号序列作为驱动序列ai通过一个动态变化的置换Bi以得到密钥流ki,然后据此对置换进行动态变换T。最后,将密钥流(即密钥序列)与明文信息流异或即可产生相应的密文输出(即输出部分)。图1中的初始化过程包括对混沌系统的初始条件、迭代次数,用于组合编码的顺序表以及非线性变换进行初始化,初始化过程实质上是对工作密钥的输入。
在图1所示的混沌编码模型中,我们对实数模式下的混沌系统的输出进行了编码、采样。以Logistic为例,首先,以有限群论为基本原理对驱动序列进行非线性变换,然后,根据有限群上的随机行走理论,使非线性变换被混沌编码模型产生的驱动序列所改变。可以从理论上证明,我们对非线性变换采用的变换操作是对称群的一个生成系,所以,这里所使用的非线性变换的状态空间足够大(一共有256!种)。
3. 克服数字混沌特性退化的方法
增加精度可以在某些方面减小有限精度所造成的影响,但效果与其实现的代价相比显然是不适宜的。为此,周红等人在文献[22]中提出将m序列的输出值作为扰动加到数字混沌映射系统中,用于扩展数字混沌序列的周期;王宏霞等人在文献[23]中提出用LFSR的输出值控制数字混沌序列输出,从而改善混沌序列的性质;李汇州等人在文献[24]中提出用双分辨率的方法解决离散混沌映射系统的满映射问题。上述方法又带来新的问题:使用m序列和LFSR方法,混沌序列的性质由外加的m序列的性质决定;使用双分辨率时,由于输入的分辨率高于输出的分辨率,其效果与实现的代价相比仍然没有得到明显的改善。
为此,我们提出了一种基于Lyapunov数的变参数补偿方法。由于Lyapunov数是混沌映射在迭代点处斜率绝对值的几何平均值,所以,可以将它与中值定理结合对数字混沌进行补偿。以一维混沌映射为例,该补偿方法的迭代式为:
(1)
式中, 为Lyapunov数,ki是可变参数。
参数ki的选择需要满足下面几个条件:
(1)ki的选取应使混沌的迭代在有限精度下达到满映射;
(2)ki的选取应使混沌序列的分布近似地等于实值混沌的分布;
(3)ki的选取应使混沌序列的周期尽可能的长。
根据上述几个条件,我们已经选取了合适的80个参数,并且以Logistic为例对该变参数补偿方法输出的混沌序列进行了分析。在精度为32位的条件下,我们计算了混沌序列的周期,其结果如下:
除周期外,我们还对复杂度、相关性和序列分布进行了检测。从结果可知,该变参数补偿方法,使得在不降低混沌的复杂度基础上,增长其周期,减弱相关性,使其逼近实值混沌系统。该方法不仅非常明显地减小了有限精度所造成的影响,使数字混沌序列的密度分布逼近实值混沌序列的理论密度分布,改善数字混沌伪随机序列的密码学性质,而且极大地降低实现其方法的代价。
4. 非线性变换
为克服符号动力学分析对混沌密码系统的威胁,我们根据有限群上的随机行走理论提出了一种非线性变换方法,并对引入了非线性变换的混沌密码系统进行了符号动力学分析,分析结果表明,引入了非线性变换的模型相对一般混沌编码模型而言,在符号动力学分析下具有较高的安全性。以二区间划分的模型为例,我们选用Logistic映射作为图1中的混沌映射f,并根据符号动力学分析中的Gray码序数[20,21]定义二进制码序数,见2式。
(2)
二值符号序列S的二进制码序数W(S)∈(0, 1)。注意,这里的Wr(xi)并不是单值的,因为同样的状态xi可能对应不同的置换Bi。
图2 在2区间划分下产生的二值符号序列的Wr(xi)分析
图2中的Wr(xi)为参数r控制下从当前状态xi出发产生的二值符号序列的二进制码序数。图2(a)是未进行非线性变换时的情形,可以看出,其它三种进行非线性变换时的情形都较图2(a)中的分形结构更为复杂。由此可见,引入了非线性变换的混沌模型相对一般混沌编码模型而言,在符号动力学分析下具有较高的安全性。
5. 混沌流密码系统的理论分析和数值分析结果
5.1 理论分析结果
密钥流的性质直接关系到整个流密码系统的安全性,是一个极为重要的指标。我们对密钥流的均匀、独立分布性质和密钥流的周期性质给出了证明,其结果如下:
(1)密钥留在0,1,…,255上均匀分布。
(2)密钥流各元素之间相互独立。
(3)密钥流出现周期的概率趋向于零。
(4)有关密钥流性质的证明过程并不涉及改变非线性变换的具体操作,也不涉及具体的驱动序列产生算法,仅仅要求驱动序列服从独立、均匀分布,并且驱动序列和非线性变换之间满足一定的条件,这为该密码系统,特别是系统驱动部分的设计和改进留下余地。
总之,该密码系统可扩展,可改进,性能良好且稳定。
5.2 数值分析结果
目前,基本密码分析原理有:代替和线性逼近、分别征服攻击、统计分析等,为了阻止基于这些基本原理的密码分析,人们对密码流生成器提出了下列设计准则:周期准则、线性复杂度准则、统计准则、混淆准则、扩散准则和函数非线性准则。
我们主要根据以上准则,对本密码系统的密钥流性质进行保密性分析,以证明其安全性。分析表明:混沌流密码系统符合所有的安全性设计准则,产生的密钥序列具有串分布均匀、随机统计特性良好、相邻密钥相关性小、周期长、线性复杂度高、混淆扩散性好、相空间无结构出现等特点;该密码系统的工作密钥空间巨大,足以抵抗穷举密钥攻击。并且,由于我们采用了非线性变换,所以该密码系统可以抵抗符号动力学分析。
6. 应用情况简介
该混沌流密码系统既有效的降低了计算复杂度,又极大的提高了密码的安全强度,从而为混沌密码学及其实现技术的研究提供了一条新的途径。该系统已于2002年10月30日获得一项发明专利:“一种用于信息安全的加解密系统”(00131287.1),并于2005年4月获得国家密码管理局的批准,命名为“SSF46”算法,现已纳入国家商用密码管理。该算法保密性强,加解密速度快,适合于流媒体加密,可在银行、证券、网络通信、电信、移动通信等需要保密的领域和行业得到推广。该加密算法被应用在基于手机令牌的身份认证系统中,并且我们正在与华为公司合作将加密算法应用于3G的安全通信之中。
参考文献
[1] Kocarev L, Jakimoski G, Stojanovski T, Parlitz U, From chaotic maps to encryption schemes, In Proc. IEEE Int. Sym. CAS. 1998, 4: 514-517
[2] Kocarev L, Chaos-based cryptography: A brief overview, IEEE Circuits and Systems, 2001, 1(3): 6-21
[3] Habutsu T, Nishio Y, Sasase I, Mori S, A secret key cryptosystem by iterating a chaotic map, in Proc. Advances in Cryptology-EUROCRYPT’91, Springer, Berlin, 1991, 127-140
[4] Fridrich J, Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifurcation Chaos, vol.8, no.6, 1998, 1259-1284
[5] Baptista M S, Cryptography with chaos, Phys. Lett. A., 1998, 240: 50-54
[6] Wai-kit W, Lap-piu L, Kwok-wo W, A modified chaotic cryptographic method, Computer Physics Communications, 2001, 138:234-236
[7] Alvarez E, Fernandez A, Garcia P, Jimenez J, et al, New approach to chaotic encryption, Phys. Lett. A, 1999, 263: 373-375
[8] Jakimoski G, Kocarev L, Chaos and cryptography: Block encryption ciphers based on chaotic maps, IEEE Tran. CAS-I, 2001, 48: 163-169
[9] Stojanovski T, Kocarev L, Chaos-based random number generators—Part I: Analysis, IEEE Tran. CAS-I, 2001, 48(3):281-288
[10] Stojanovski T, Pihl J, Kocarev L, Chaos-based random number generators—Part II: Practical Realization, IEEE Tran. CAS-I, 2001, 48(3):382-385
[11] http://www.safechaos.com/chpk.htm
[12] 王育民,信息安全理论与技术的几个进展情况,中国科学基金,2003,2,76-81
[13] Borcherds P.H., Mccauley G.P., The digital tent map and the trapezoidal map, Chaos, Solitons & Fractal, 1993, 3(4): 451-466
[14] Palmore L, et al, Computer arithmetic, chaos and fractals, Physica, 1990, D42:99-110
[15] Shujun L, Qi L, Wenmin L, Xuanqin M and Yuanlong C, Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding, Cryptography and Coding, 8th IMA International Conference Proceedings, LNCS, vol.2260, pp.205-221, Springer-Verlag, Berlin, 2001
[16] 王育民,混沌序列密码实用化问题,西安电子科技大学学报,1997,24(4):560-562
[17] 吕金虎,陆君安,陈士华,混沌时间序列分析及其应用,武汉大学出版社,2002
[18] 冯登国 着,密码分析学,北京:清华大学出版社,2000
[19] B.Schneier着,吴世忠等译,应用密码学-协议、算法与C原程序,北京:机械工业出版社,2000
[20] Xiaogang Wu, Hanping Hu, Baoliang Zhang, Parameter estimation only from the symbolic sequences generated by chaos system, Chaos, Solitons & Fractals, 2004, 22(2):359-366
[21] Hanping Hu, Xiaogang Wu, Zuxi Wang, Synchronizing chaotic map from two-valued symbolic sequences, Chaos, Solitons & Fractals, 2005, 24(4):1059-1064
[22] Zhou H., Ling X.T., Realizing finite precision chaotic systems via perturbation of m-sequences, Acta Electron. Sin, 1997, vol.25, no.7, 95-97
[23] 王宏霞,虞厥邦,Logistic-map混沌扩频序列的有限精度实现新方法,系统工程与电子技术,2002,vol.24, no.2
[24] Zhou L.H., Feng Z.J., A new idea of using one-dimensional PWL map in digital secure communications—al resolution approach, IEEE Tran. On Circuits and Systems—II: Analog and Digital Signal Proceedings, 2000, vol.47, no.10, Oct.
J. 忆阻器混沌加密系统什么时间被提出的
在如今的信息时代中,计算机已成为人们必不可少的工具,但随之产生而来的信息安全问题已成为一个重要的挑战性课题。混沌对参数和初始值的极度敏感性使其具有不可预测性,这使得它具有传统密码的优良特性,混沌密码学已成为一种极具潜力的新型密码设计方法。忆阻器是一个具有记忆特性的非线性电阻,除在非遗失性存储器、人工神经网络等领域有着重要的应用前景外,它还能构成性能优良的非线性振荡电路。基于以上背景,本文研究复杂混沌系统的设计方法,构造了忆阻器混沌振荡电路和含有自然指数项的混沌系统,并利用它们产生的良好伪随机序列,设计了一个可以对计算机以及与计算机相连接的移动硬盘、U盘等存储设备中的文件进行加密的密码系统。本文主要的研究内容如下。 (1)基于惠普实验室的TiO2忆阻器建立了磁控记忆电导的数学模型,尝试利用两个TiO2忆阻器设计实现了一种忆阻器混沌振荡电路,对其进行了动力学分析,包括平衡点及其稳定性、耗散性、李氏指数和分岔图,对其进行了MATLAB仿真和DSP数字化实现。为了产生复杂的混沌序列,还设计了一个含有双指数项的混沌系统,对其进行了分析、仿真和数字化实现,与单指数混沌系统相比它较具有更复杂的动力学特性。 (2)研究了连续混沌系统的离散量化方法,建立了连续混沌系统的离散数学模型,分别利用门限阈值法和位抽取法对构造的构造的TiO2忆阻器混沌系统和双指数混沌系统进行量化,获得了混沌数字伪随机序列