导航:首页 > 文档加密 > 光纤通信技术pdf

光纤通信技术pdf

发布时间:2023-02-01 04:21:25

A. 光纤通信调频的作用

光纤通信调频的作用?目前,在广播电视信号传播过程中,光纤是传播效率最高同时应用也十分广泛的一种传播手段,光纤有着信息容量大并且稳定性强等优点,在数据传输时不需要经过压缩过程就能够进行信号传输工作。本文主要阐述了光纤通信技术的主要特征,以及光纤通信在广播电视系统中的具体运用措施。

关键词:光纤通信;广播电视;应用

如今,随着科学技术的不断进步,广播电视系统也在不断发展。而近几年,将光纤通信技术运用在广播电视系统中,表现十分优异,可以有效提高信号传输的效率。当前的光纤通信与其他通信技术相比较优势更加明显,通过运用光纤通信技术也能有效促进我国广播电视行业快速发展。目前,光纤通信技术通过不断应用与研究也日渐完善,并且获得了各行各业的普遍应用。

1光纤通信系统概述

光纤通信在传输信息过程中通常利用电磁波作为介质,所以在传输速度方面具有十分明显的优势。通常光纤通信系统的主要构成部分分为以下几个结构。第一,光发射器。光发射器能够利用光源以及相关调制设备来实现对信号的转化,将电信号转化成光信号。第二,光接收设备。光接收设备的主要作用便是进行信号的收取,同时再次将光信号进行转化,通过相关检测设备来对光信号进行探测,之后将光信号传输到接收设备中。第三,光缆。光缆是信号传输的重要途径,主要是将已经完成第一步转化过程的光信号进行传送,将其传送至接收设备。第四,中继器。中继器的主要结构分为光源、光信号检测设备、再生电路三个方面。中继器不但能把正在传输的光信号进行放大,还能够对光信号进行合理的调节。第五,光纤连接设备。由于光信号在传输过程中周期较长,所以也需要光纤的长度达到一定标准。不过若是光纤长度过长,那么很有可能会由于其不可延伸性而造成一些信号传输质量问题,因此必须要利用光纤连接设备进行连接,从而保证信号的稳定性。

2光纤通信传输的特征

光纤通信的主要内容便是光纤,主要通过光纤来做到对信号的传输,而光纤也只有信号传输这一种功用,在广播电视系统中利用光纤通信能够有效提高信号的传输效率。不过,由于光纤的安装流程较为复杂,并且一旦安装完毕,若想更改或是大幅度调整难度非常大,必须要保证其安装质量,因此,光纤在材料的选取方面就必须要严格管理。通常最为常见的光纤材料便是一种特殊的玻璃材料,或是石英,相对来说,石英的投入成本较低,又能满足光纤的基本传输质量要求,所以石英光纤的运用更加广泛。石英光纤也分为单模光纤和多模光纤两种,这两种光纤的信号传输特征也存在差异。一般来说,多模光纤一般在距离较近并且信息容量较低的通信过程中有着较为好的效果,因为多模光纤若是进行远距离信号传输,那么很有可能会导致散射现象,所以其更为适合近距离信号传输。而单模光纤的传输效率要比多模光纤要高,并且单模光纤在较远距离的信号传输过程中速度更快。单模光纤的信号传送方法便是在光纤内进行传输,并且在传输过程中还能够很好地规避信号散射现象的产生,而且单模光纤相比之下投入成本更低。光纤在广播电视信号的传播过程中也可能会出现信号损耗的现象,而且基本上损耗现象是无法规避的。光纤信号损耗主要体现在散射、辐射、衰弱三个方面,并且信号的损耗和其传输距离有直接的联系,也可以说,广播电视信号传输的距离越远,那么信号的损耗程度就越大。同时,在平常的信号传输过程中,通常都会需要进行信号的转化,因此,在信号转化过程中,信号的损耗情况很有可能会加重,进而会对信号传输造成影响。

3光纤通信在广播电视系统中的运用现状

现阶段,运用光纤通信已经成为广播电视行业的必然趋向。比如:福建省某广播电视企业就建立了以SDH为信号传输平台,以光缆作为信号传输媒介的传输系统。而光纤通信也逐渐展现出了其优势,通过光纤网络来进行广播电视信号传送有效地避免了传统广播电视信号传输过程中受环境以及自身影响而造成的噪声现象,大大提高了信号的传输速度和稳定性。光纤通信系统的优点十分明显,并不会如卫星接收信号那样接收和传输信号都有着一定的延迟,而且卫星传输的方式在很大程度上也会受到环境的影响,在传播时信号受到较大干扰。

B. 光纤通信技术的技术分类

光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。
特种光纤具体有以下几种:
1. 有源光纤
这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显着作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。
2.色散补偿光纤(Dispersion Compensation Fiber,DCF)
常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,又开发出一种既补偿色散又能补偿色散斜率的双补偿光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,但符号相反,所以更适合在整个波形内的均衡补偿。
3. 光纤光栅(Fiber Grating)
光纤光栅是利用光纤材料的光敏性在紫外光的照射(通常称为紫外光写入)下,于光纤芯部产生周期性的折射率变化(即光栅)而制成的。使用的是掺锗光纤,在相位掩膜板的掩蔽下,用紫外光照射(在载氢气氛中),使纤芯的折射率产生周期性的变化,然后经退火处理后可长期保存。相位掩膜板实际上为一块特殊设计的光栅,其正负一级衍射光相交形成干涉条纹,这样就在纤芯逐渐产生成光栅。光栅周期模板周期的二分之一。众所周知,光栅本身是一种选频器件,利用光纤光栅可以制作成许多重要的光无源器件及光有源器件。例如:色散补偿器、增益均衡器、光分插复用器、光滤波器、光波复用器、光模或转换器、光脉冲压缩器、光纤传感器以及光纤激光器等。
4. 多芯单模光纤(Multi-Coremono-Mode Fiber,MCF)
多芯光纤是一个共用外包层、内含有多根纤芯、而每根纤芯又有自己的内包层的单模光纤。这种光纤的明显优势是成本较低,生产成本较普通的光纤约低50%。此外,这种光纤可以提高成缆的集成密度,同时也可降低施工成本。以上是光纤技术在近几年里所取得的主要成就。至于光缆方面的成就,我们认为主要表现在带状光缆的开发成功及批量化生产方面。这种光缆是光纤接入网及局域网中必备的一种光缆。光缆的含纤数量达千根以上,有力地保证了接入网的建设。 光有源器件的研究与开发本来是一个最为活跃的领域,但由于前几年已取得辉煌的成果,所以当今的活动空间已大大缩小。超晶格结构材料与量子阱器件,已完全成熟,而且可以大批量生产,已完全商品化,如多量子阱激光器(MQW-LD,MQW-DFBLD)。
除此之外,已在下列几方面取得重大成就。
1. 集成器件
这里主要指光电集成(OEIC)已开始商品化,如分布反馈激光器(DFB-LD)与电吸收调制器(EAMD)的集成,即DFB-EA,已开始商品化;其它发射器件的集成,如DFB-LD、MQW-LD分别与MESFET或HBT或HEMT的集成;接收器件的集成主要是PIN、金属、半导体、金属探测器分别与MESFET或HBT或HEMT的前置放大电路的集成。虽然这些集成都已获得成功,但还没有商品化。
2. 垂直腔面发射激光器(VCSEL)
由于便于集成和高密度应用,垂直腔面发射激光器受到广泛重视。这种结构的器件已在短波长(ALGaAs/GaAs)方面取得巨大的成功,并开始商品化;在长波长(InGaAsF/InP)方面的研制工作早已开始进行,也有少量商品。可以断言,垂直腔面发射激光器将在接入网、局域网中发挥重大作用。
3. 窄带响应可调谐集成光子探测器
由于DWDM光网络系统信道间隔越来越小,甚至到0.1nm。为此,探测器的响应谱半宽也应基本上达到这个要求。恰好窄带探测器有陡锐的响应谱特性,能够满足这一要求。集F-P腔滤波器和光吸收有源层于一体的共振腔增强(RCE)型探测器能提供一个重要的全面解决方案。
4. 基于硅基的异质材料的多量子阱器件与集成(SiGe/Si MQW)
这方面的研究是一大热点。众所周知,硅(Si)、锗(Ge)是间接带隙材料,发光效率很低,不适合作光电子器件,但是Si材料的半导体工艺非常成熟。于是人们设想,利用能带剪裁工程使物质改性,以达到在硅基基础上制作光电子器件及其集成(主要是实现光电集成,即OEIC)的目的,这方面已取得巨大成就。在理论上有众多的创新,在技术上有重大的突破,器件水平日趋完善。 光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。光放大器主要有3种:光纤放大器、拉曼放大器以及半导体光放大器。光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的。掺铒光纤放大器的增益带较宽,覆盖S、C、L频带; 掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应?喇曼散射。在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。其工作带宽是很宽的。但增益幅度稍小一些,制造难度较大。这种光放大器虽然已实用了,但产量很小。
到此,我们系统、全面地评论了光纤通信技术的重大进展,至于光纤通信技术的发展方向,可以概括为两个方面: 一是超大容量、超长距离的传输与交换技术; 二是全光网络技术。 随着通信网络逐渐向全光平台发展,网络的优化、路由、保护和自愈功能在光通信领域中越来越重要。采用光交换技术可以克服电子交换的容量瓶颈问题,实现网络的高速率和协议透明性,提高网络的重构灵活性和生存性,大量节省建网和网络升级成本。光交换技术可分成光的电路交换(OCS)和光分组交换(OPS)两种主要类型。光的电路交换类似于现存的电路交换技术,采用OXC、OADM等光器件设置光通路,中间节点不需要使用光缓存,对OCS的研究已经较为成熟。根据交换对象的不同OCS又可以分为:⑴ 光时分交换技术,时分复用是通信网中普遍采用的一种复用方式,时分光交换就是在时间轴上将复用的光信号的时间位置t1转换成另一个时间位置t2 ⑵ 光波分交换技术,是指光信号在网络节点中不经过光/电转换,直接将所携带的信息从一个波长转移到另一个波长上。⑶ 光空分交换技术,即根据需要在两个或多个点之间建立物理通道,这个通道可以是光波导也可以是自由空间的波束,信息交换通过改变传输路径来完成⑷ 光码分交换技术,光码分复用(OCDMA)是一种扩频通信技术,不同户的信号用互成正交的不同码序列填充,接受时只要用与发送方相同的法序列进行相关接受,即可恢复原用户信息。光码分交换的原理就是将某个正交码上的光信号交换到另一个正交码上,实现不同码子之间的交换。

阅读全文

与光纤通信技术pdf相关的资料

热点内容
下行 电影在线观看 浏览:786
欧美大尺度男同电影 浏览:985
张学友最后大佬电影 浏览:777
心理罪中廖亚凡怀了孩子 浏览:844
服务器如何开权限设置密码 浏览:271
申请资料填写小程序源码 浏览:177
服务器怎么私信别人 浏览:994
phpxdebug关闭 浏览:690
能看的网址大家都懂的 浏览:287
安卓程序员开发经验 浏览:660
服务器返回超时是怎么回事 浏览:653
网关后dns服务器有什么用 浏览:607
line连接不上服务器怎么办 浏览:862
付费电影免费下载 浏览:607
反编译flv 浏览:939
python替换指定位置 浏览:337
有名txt下载宝书网 浏览:197
飞机app安卓怎么注册 浏览:801
电影院默认场区什么意思 浏览:657
韩国 禁忌 姐弟爱唯美电影 浏览:82