A. ML - 决策树(decision tree)
机器学习中分类和预测算法的评估:
判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个 属性上的测试 ,每个分支代表一个 属性输出 ,而每个树叶结点代表 类或类分布 。树的最顶层是根结点。
机器学习中分类方法中的一个重要算法
信息和抽象,如何度量?
1948年,香农提出了 ”信息熵(entropy)“的概念
一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者
是我们一无所知的事情,需要了解大量信息==> 信息量的度量就等于不确定性的多少
例子:猜世界杯冠军,假如一无所知,猜多少次?
每个队夺冠的几率不是相等的
比特(bit)来衡量信息的多少
变量的不确定性越大,熵也就越大
3.1 决策树归纳算法 ( ID3 )
1970-1980, J.Ross. Quinlan, ID3算法
选择属性(A为age时)判断结点
信息获取量(Information Gain) :
Gain(A) = Info(D) - Infor_A(D)
Gain(A) =按yes/no分的熵 - 按A属性分类的熵
通过A来作为节点分类获取了多少信息
类似
Gain(income) = 0.029
Gain(student) = 0.151
Gain(credit_rating)=0.048
所以,选择age作为第一个根节点
重复。。。
算法:
*其他算法:
C4.5 : Quinlan
Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
共同点:都是贪心算法,自上而下(Top-down approach)
区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
先剪枝
后剪枝
直观,便于理解,小规模数据集有效
处理连续变量不好(离散化,阈值选择对结果影响大)
类别较多时,错误增加的比较快
可规模性一般
1. Python
2. Python机器学习的库: scikit-learn
2.1: 特性:
简单高效的数据挖掘和机器学习分析
对所有用户开放,根据不同需求高度可重用性
基于Numpy, SciPy和matplotlib
开源,商用级别:获得 BSD许可
2.2 覆盖问题领域:
分类(classification), 回归(regression), 聚类(clustering), 降维(dimensionality rection)
模型选择(model selection), 预处理(preprocessing)
3. 使用用scikit-learn
安装scikit-learn: pip, easy_install, windows installer
安装必要package:numpy, SciPy和matplotlib, 可使用 Anaconda (包含numpy, scipy等科学计算常用package)
4. 例子:
文档: http://scikit-learn.org/stable/moles/tree.html
安装 Graphviz: http://www.graphviz.org/
配置环境变量
转化dot文件至pdf可视化决策树:dot -Tpdf iris.dot -o outpu.pdf