导航:首页 > 文档加密 > 数学的奇妙pdf

数学的奇妙pdf

发布时间:2022-04-23 06:35:54

Ⅰ 有没有《数学的奇妙》的简介

《数学的奇妙》是1999年4月1日由上海科技教育出版社出版的图书,作者是西奥妮﹒帕帕斯(美)。
你不必去解算数学题,更不必成为一名数学家,就可以发现数学的奇妙。本书收集了一些想法,一些都有其潜在的数学主题的想法。它不是一本教科书。你不会对某个论题变得精通,也不会发现某种想法已经穷尽无遗。《数学的奇妙》在这些想法的世界中探究,揭示数学的魅力对我们生活的影响,并帮助你在你最想不到的地方去发现数学。 很多人认为数学是一门严格的一成不变的课程。任何事情都不能脱离事实。人类的大脑不断地创造着数学思想和独立于我们世界的迷人的新世界,并且这些思想立刻与我们的世界联系起来,几乎就像有人挥动过魔杖一般。某一维中的对象是如何消失在另一维中的,任何两点之间怎么总能找到一个新的点,数是怎样运算的,方程是怎样解出的,坐标如何产生图像,如何用无穷解题,公式如何生成——所有这些似乎都具有一种奇妙的性质。 数学思想是想象力的虚构物。数学的想法存在于另一世界中,数学的对象是纯由逻辑和创造力产生的。标准的正方形或圆形存在于数学世界中,而我们的世界所具有的只是数学对象的代表物而已。 每一章中所述的论题和概念绝非专属所在章节。相反,所举的各个例子很容易越出各章主观设定的边界。即使一种数学思想可能局限于一个特定的领域,人们也并不希望如此。每一论题基本上是独立的,都可以单独赏阅。我希望本书将成为踏入数学世界的垫脚石。

Ⅱ 《奇妙数学史数字与生活》pdf下载在线阅读全文,求百度网盘云资源

《奇妙数学史数字与生活》网络网盘pdf最新全集下载:
链接:https://pan..com/s/15br2ViINDgqUMGdLNrTqGg

?pwd=5wh1 提取码:5wh1
简介:本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到**数的神奇,从十进制到现代的信息论,从**台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。

Ⅲ 数学的奇妙之处

令这个数为X则[(x+52.8)* 5-3.9343]除以0.5—10x 也就是10x+52.8 * 10 —3.9343 * 2 —10x显然任何数都一样

Ⅳ 有没有 《奇妙数学大世界A》电子版书籍百度云下载

奇妙数学大世界A.pdf

链接:https://pan..com/s/1Je3_lgQc143BQ3T_u5daQA

提取码:FDLK

Ⅳ 哪位大佬有 《奇妙数学大世界B》电子版书籍百度网盘资源下载

奇妙数学大世界B.pdf

链接:https://pan..com/s/1Pfb8AbYjQ-sm-Pugh8tXyg

提取码:WTIO

Ⅵ 有没有数学的奇妙的简介

首先,你每天吃饭,要买菜,对不对?买菜要付钱,对不对?付钱要用到数学,对不对还有,你在玩的时候会看到小蚂蚁啊,什么的,就要数对不对? 另外,你每天要看时间,每天你可以计算一下睡觉时间充不充足,你又要用到数学了,对不对

Ⅶ 数学是音乐之父,没有数学就没有音乐。在琴弦上你就会发现数学的奇妙,长度不同的弦发出不同的奇妙的声音

在这一轮课程改革中,“数学与文化”成为了数学和数学教育工作者最为关注的问题之一. 实际上,在很长一段时间内,许多数学和数学教育工作者已经在思考和研究这个问题, 在即将推行的“高中数学课程标准”中,明确的要求把“数学文化”贯穿高中课程的始终. 对于涉及“数学文化”的一系列理论问题,应该承认还没有讨论得很清楚, 还有很多的争论,例如,很多学者对“数学文化”这个说法也有疑义,我们认为这是很正常的. 对这些问题的研究,我们建议从两个方面同时进行, 一方面进行理论上的研究;另一方面,积极地开发一些“数学与文化”的实例,案例,课例,探索如何将“数学文化”渗透到课堂教学中,如何让学生从“数学文化”中提高数学素养, 在此基础上再进行一些理论上的思考,从实践到理论,做一些实证研究. 下面是我们提供的一个实例 ———数学与音乐,也可以看作一个素材,很希望工作在一线的教师能作进一步的开发,能使这样的素材以不同的形式进入课堂或课外活动.我们也希望有更多的人来开发这样的素材, 并希望这些素材能出现在教材中.

在数学课程标准的研制过程中,我们结识了一些音乐界的专家,他们给我们讲述了很多音乐和数学的联系,数学在音乐中的应用,他们特别强调,在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学. 他们还告诉我们,在音乐界,有一些数学素养很好的音乐家为音乐的发展做出了重要的贡献. 他们和我们都希望有志于音乐事业的同学们学好数学,因为在将来的音乐事业中,数学将起着非常重要的作用.

《梁祝》优美动听的旋律《,十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫 ……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系?

其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来[1]. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生了 , 而且在西方音乐界占据了统治地位. 虽然托勒密(C. Ptolemy ,约100 —165 年) 对毕达哥拉斯音阶的缺点进行了改造 ,得出了较为理想的纯律音阶(the Just Scale) 及相应的调音理论 ,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶(the temperedScale) 及相应的调音理论出现才被彻底动摇. 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子.地员篇》和《吕氏春秋.音律篇》中分别有述;明代朱载 (1536 - 1610) 在其音乐着作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义 ?内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次.由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学.乐谱的书写离不开数学.

看一下乐器之王 ———钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个 C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键 ,而 5 个黑键分成 2 组 ,一组有 2 个黑键 ,一组有 3 个黑键.2、3、5、8、13 恰好就是着名的斐波那契数列中的前几个数.

如果说斐波那契数在钢琴键上的出现是一种巧合, 那么等比数列在音乐中的出现就决非偶然了: 1、2、3、4、5、6、7、i等音阶就是利用等比数列规定的. 再来看图1,显然这个八度音程被黑键和白键分成了12个半音,并且我们知道下一个 C键发出乐音的振动次数(即频率) 是第一个 C 键振动次数的 2倍,因为用2 来分割,所以这个划分是按照等比数列而作出的. 我们容易求出分割比 x ,显然 x 满足 x12= 2 ,解这个方程可得 x 是个无理数 , 大约是 1106.于是我们说某个半音的音高是那个音的音高的1106 倍 ,而全音的音高是那个音的音高 11062 倍. 实际上,在吉它中也存在着同样的等比数列[3].

音乐中的数学变换.

数学中存在着平移变换,音乐中是否也存在着平移变换呢 ?我们可以通过两个音乐小节[2]来寻找答案. 显然可以把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移, 这实际上就是音乐中的反复. 把两个音节移到直角坐标系中,那么就表现为图 3. 显然,这正是数学中的平移. 我们知道作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的. 比如, 图 4 就是西方乐曲 When the Saints GoMarching In 的主题[2] ,显然 ,这首乐曲的主题就可以看作是通过平移得到的.

如果我们把五线谱中的一条适当的横线作为时间轴(横轴 x) ,与时间轴垂直的直线作为音高轴(纵轴y) ,那么我们就在五线谱中建立了时间 - 音高的平面直角坐标系. 于是, 图 4 中一系列的反复或者平移,就可以用函数近似地表示出来[2] , 如图 5 所示,其中 x 是时间, y 是音高. 当然我们也可以在时间音高的平面直角坐标系中用函数把图2中的两个音节近似地表示出来.

在这里我们需要提及十九世纪的一位着名的数学家,他就是约瑟夫.傅里叶 (Joseph Fourier) ,正是他的努力使人们对乐声性质的认识达到了顶峰. 他证明了所有的乐声, 不管是器乐还是声乐, 都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和[1].

音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等. 图6 的两个音节就是音乐中的反射变换[2]. 如果我们仍从数学的角度来考虑,把这些音符放进坐标系中, 那么它在数学中的表现就是我们常见的反射变换,如图 7所示. 同样我们也可以在时间 - 音高直角坐标系中把这两个音节用函数近似地表示出来.

通过以上分析可知,一首乐曲就有可能是对一些基本曲段进行各种数学变换的结果.

大自然音乐中的数学.

大自然中的音乐与数学的联系更加神奇,通常不为大家所知. 例如[2] , 蟋蟀鸣叫可以说是大自然之音乐,殊不知蟋蟀鸣叫的频率与气温有着很大的关系,我们可以用一个一次函数来表示:C = 4 t – 160。其中 C代表蟋蟀每分钟叫的次数, t 代表温度.按照这一公式,我们只要知道蟋蟀每分钟叫的次数,不用温度计就可以知道天气的温度了!

理性的数学中也存在着感性的音乐.

由一段三角函数图像出发,我们只要对它进行适当的分段,形成适当的小节, 并在曲线上选取适当的点作为音符的位置所在,那么就可以作出一节节的乐曲. 由此可见,我们不仅能像匈牙利作曲家贝拉 .巴托克那样利用黄金分割来作曲,而且也可以从纯粹的函数图像出发来作曲. 这正是数学家约瑟夫.傅里叶的后继工作,也是其工作的逆过程. 其中最典型的代表人物就是20 世纪20 年代的哥伦比亚大学的数学和音乐教授约瑟夫 .希林格(JosephSchillinger) ,他曾经把纽约时报的一条起伏不定的商务曲线描述在坐标纸上,然后把这条曲线的各个基本段按照适当的、和谐的比例和间隔转变为乐曲,最后在乐器上进行演奏, 结果发现这竟然是一首曲调优美、与巴赫的音乐作品极为相似的乐曲[2] !这位教授甚至认为,根据一套准则,所有的音乐杰作都可以转变为数学公式. 他的学生乔治 .格什温(George Gershwin) 更是推陈出新, 创建了一套用数学作曲的系统, 据说着名歌剧《波吉与贝丝》(Porgy and Bess) 就是他使用这样的一套系统创作的.

因而我们说, 音乐中出现数学、数学中存在音乐并不是一种偶然,而是数学和音乐融和贯通于一体的一种体现. 我们知道音乐通过演奏出一串串音符而把人的喜怒哀乐或对大自然、人生的态度等表现出来,即音乐抒发人们的情感, 是对人们自己内心世界的反映和对客观世界的感触,因而它是用来描述客观世界的,只不过是以一种感性的或者说是更具有个人主体色彩的方式来进行. 而数学是以一种理性的、抽象的方式来描述世界,使人类对世界有一个客观的、科学的理解和认识, 并通过一些简洁、优美、和谐的公式来表现大自然. 因此可以说数学和音乐都是用来描述世界的,只是描述方式有所不同,但最终目的都是为人类更好地生存和发展服务,于是它们之间存在着内在的联系应该是一件自然而然的事.

既然数学与音乐有如此美妙的联系,为何不让我们沉浸在《梁祝》优美动听的旋律中或置身于昆虫啁啾鸣叫的田野里静下心来思考数学与音乐的内在联系呢 ?为何不让我们在铮铮琵琶声中或令人激动的交响曲中充满信心地对它们的内在联系继续探索呢 ?

上面,我们提供了一些数学与音乐联系的素材,如何将这些素材“加工”成为“数学教育”的内容呢?我们提出几个问题仅供教材编写者和在一线工作的教师思考.

1) 如何将这样的素材经过加工渗透到数学教学和数学教材中 ?

2) 能否把这些素材编写成为“科普报告”, 在课外活动中,向音乐和数学爱好者报告,调查,了解,思考这样的报告对学生的影响以及学生对这样的报告的反映.
若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。

乐谱的书写是表现数学对音乐的影响的第一个显着的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。

除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。

毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。

你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=kx形式的方程描述,式中k>0。一个例子是y=2x。它的坐标图如下。

不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状。

19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。

傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来。音高与曲线的频率有关,音量和音质分别与周期函数①的振幅和形状有关。

如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展。数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的。许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较。电子音乐复制的保真度也与周期曲线密切相关。音乐家和数学家将继续在音乐的产生和复制方面发挥同等重要的作用。

上图表示一根弦的分段振动和整体振动。最长的振动决定音高,较小的振动则产生泛音。

①周期函数即以等长区间重复着形状的函数。

Ⅷ 奇妙的数学是什么

数学是一门奇妙的学科,从最简单的算数到极难的椭圆曲线问题,我们从中都可以看到一些仿佛和我们直观印象不符,有些反直觉的知识,还有一些很有意思的数学趣闻,下面就举一些简单的例子让大家感受数学的奇妙。

首先是最常见的一个问题:0.999.......是否等于1,其实按照现在实数定义,这两个数是严格相等的,并不是0.9999...的极限等于1,严格的证明可以使用戴德金分割来证明,一般使用1/3之类的证明是不严谨的,因为无限小数严格来说不能做四则运算。

算术中的1+1=2并不是公理,根据皮亚诺公理它是严格可证的。

科赫曲线:面积有限,周长无限。

托里拆利小号:体积有限,表面积无限。

不动点定理:把一张世界地图揉成一团,随机地丢地上,地图上的一个地点的垂直投影必定和现实中这个地点在空间上相重合。

e是无理数,π是无理数,那么e+π,e-π,e*π,e/π是有理数还是无理数呢?看似如此简单的问题,人们不知道。

不可计算数:蔡廷常数,这听起来有点不可思议,蔡廷常数是一个确定的数字,但现已在理论上证明了,你是永远无法求出它来的。

五次方程没有根式解,是不是很令人沮丧与费解,但这就是事实。

上下山问题:爬同一座山,上山速度3m/s,下山速度5m/s,平均速度不是4m/s。也有点反常识,但简单计算一下就知道了。

调和级数是发散的!

皮筋与蚂蚁问题:一只蚂蚁在理性弹性绳的一端,向另一端以每秒1cm的速度爬行。弹性绳同时以每秒10cm的速度均匀地拉长,蚂蚁能否爬到终点?如果以每秒100cm的速度均匀拉长呢?

摆线长度:摆线长度等于圆直径四倍,这条与圆息息相关,怎么看怎么“无理”的一条线,长度不仅和π没有关系,还是个漂亮的整数倍!太不可理解了,一个圆滚出来的线居然与π无关。

正多边形有无穷多个,那么正多面体呢?有点意外,只有五种,其实这个不是很难证明,用欧拉定理就可以。

最大有意义的数:葛立恒数(当然现在不是啦,但他的构造是最让人能理解的,其它的Tree(3)之类构造就很难让人听懂),这个数的第一层就已经远远超出人类的想象,你甚至无法说出这个数的位数的位数的位数的位数(随便你写n多位数)。。。。。。(比如1234567890这个数的位数是10,而10的位数是2,2的位数是1)

关于维度:数学中的空间维度和物理中的维度定义是不尽相同的。数学中关于空间维度中的定义是过

Ⅸ 数学奇妙现象

数字黑洞: 黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。数字黑洞运算简单,结论明了,易于理解,故人们乐于研究。但有些证明却不那么容易。

例如:
123数字黑洞:
任取一个数,相继依次写下它所含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,最后必然停留在数123。
例:所给数字 1479
第一次计算结果 448
第二次计算结果 303
第三次计算结果 123

数字黑洞495
只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么
你把这三个数字按大小重新排列,得出最大数和最小数。再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。
举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495。
应该只是一种数字规律吧,像这样的还有狠多,比如四位数的数字黑洞6174:
把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。
例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。
如取四位数5679,按以上方法作运算如下:
9765-5679=4086 8640-4068=4572 7542-2457=5085
8550-5058=3492 9432-2349=7083 8730-3078=5652
6552-2556=3996 9963-3699=6264 6642-2466=4176
7641-1467=6174

Ⅹ 《奇妙数学大世界A》pdf下载在线阅读,求百度网盘云资源

《奇妙数学大世界A》(孟繁学)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1tWlSdSpMyGPAScq2gS2c7w

提取码:c3t3

书名:奇妙数学大世界A

作者:孟繁学

出版年份:1999-8

页数:321

内容简介:

十个阿拉伯数字,像五彩缤纷的花絮。四种运算符号+、-、×、÷,如变幻多姿的魔棒。数字与符号的组合分化,则构建一道道迷人的风景线,它牵动着多少智者的神经,激荡起几多想象和思考。

这本书比较适合各年龄段对数学兴趣浓厚的人士,对数学教师也会有很大启示。

阅读全文

与数学的奇妙pdf相关的资料

热点内容
centosphp环境包 浏览:601
mfipdf 浏览:534
电脑解压后电脑蓝屏 浏览:295
外网访问内网服务器如何在路由器设置 浏览:856
2014统计年鉴pdf 浏览:434
linuxoracle用户密码 浏览:757
股票交易pdf 浏览:898
p2papp源码 浏览:308
记录睡眠软件app哪个好用 浏览:140
液压助力车压缩比 浏览:217
文件服务器上如何查看 浏览:975
雪花绘制源码 浏览:662
app主页演示图怎么做 浏览:542
幼儿园设计pdf 浏览:645
干接点输入单片机 浏览:541
亚马逊云服务器查看 浏览:163
如何用免费云服务器 浏览:610
php的输出命令 浏览:264
在家怎么制作解压小玩具 浏览:99
javascript源码辅助阅读 浏览:384