❶ AES加密技术
关键字
蓝牙
流加密
分组加密
des
aes
1
引言随着机技术的迅速,网络中的信息安全问题越来...
vba、word和数据库的联合编程日期:2008-04-05
01:37:06
点击:15
好评:0
摘要
本文介绍了用vba作为开发语言,用access或foxpro作为数据...
wsdxs.cn/html/pc-theory
❷ 保障信息安全最基本、最核心的技术措施是_
保障信息安全最基本、最核心的技术是加密技术。
加密技术是电子商务采取的主要安全保密措施,是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。加密技术的应用是多方面的,但最为广泛的还是在电子商务和VPN上的应用,深受广大用户的喜爱。
加密技术包括两个元素:算法和密钥。算法是将普通的文本(或者可以理解的信息)与一串数字(密钥)的结合,产生不可理解的密文的步骤,密钥是用来对数据进行编码和解码的一种算法。在安全保密中,可通过适当的密钥加密技术和管理机制来保证网络的信息通讯安全。
密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。
对称加密以数据加密标准(DES,Data Encryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Adleman)算法为代表。对称加密的加密密钥和解密密钥相同,而非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密。
加密技术应用
在常规的邮政系统中,寄信人用信封隐藏其内容,这就是最基本的保密技术,而在电子商务中,有形的信封就不再成为其代表性的选择。
为了实现电子信息的保密性,就必须实现该信息对除特定收信人以外的任何人都是不可读取的。而为了保证共享设计规范的贸易伙伴的信息安全性就必须采取一定的手段来隐藏信息,而隐藏信息的最有效手段便是加密。
保密通信,计算机密钥,防复制软盘等都属于信息加密技术。通信过程中的加密主要是采用密码,在数字通信中可利用计算机采用加密法,改变负载信息的数码结构。计算机信息保护则以软件加密为主。
❸ 加密解密字符串的算法原理
我们经常需要一种措施来保护我们的数据,防止被一些怀有不良用心的人所看到或者破坏。在信息时代,信息可以帮助团体或个人,使他们受益,同样,信息也可以用来对他们构成威胁,造成破坏。在竞争激烈的大公司中,工业间谍经常会获取对方的情报。因此,在客观上就需要一种强有力的安全措施来保护机密数据不被窃取或篡改。数据加密与解密从宏观上讲是非常简单的,很容易理解。加密与解密的一些方法是非常直接的,很容易掌握,可以很方便的对机密数据进行加密和解密。
一:数据加密方法
在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。
幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86 cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。
对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。
与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient 可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。
但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。
在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。
循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和 ,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如 xmodem-crc。 这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。
二.基于公钥的加密算法
一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常着名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。
rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。
我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。
一些简单的基于rsa算法的加密算法可在下面的站点找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一个崭新的多步加密算法
现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:
使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:
把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotgun technique"技术来产生解码表。基本上说,如果 a映射到b,那么b一定可以映射到a,所以b[a[n]] = n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。
使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:
crypto1 = a[crypto0][value]
变量'crypto1'是加密后的数据,'crypto0'是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子” 是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试: 使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。
加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。
如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。 这个算法产生了一系列的随机数。算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
变量'aresult'中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。
作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。
四.结论:
由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。
❹ 现在病毒经常加密文件应该怎么解密呀
病毒加密的文件一般是没有办法解密的
给你提供一个办法试一下,可以自己先试用超级加密3000之类的加密软件,对你的电脑上面的文件先加密一下,这样可能病毒就没有办法再次加密了
❺ 数据加密的基本信息
和防火墙配合使用的数据加密技术,是为提高信息系统和数据的安全性和保密性,防止秘密数据被外部破译而采用的主要技术手段之一。在技术上分别从软件和硬件两方面采取措施。按照作用的不同,数据加密技术可分为数据传输加密技术、数据存储加密技术、数据完整性的鉴别技术和密钥管理技术。
数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。
数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。
数据完整性鉴别技术的目的是对介入信息传送、存取和处理的人的身份和相关数据内容进行验证,一般包括口令、密钥、身份、数据等项的鉴别。系统通过对比验证对象输入的特征值是否符合预先设定的参数,实现对数据的安全保护。
密钥管理技术包括密钥的产生、分配、保存、更换和销毁等各个环节上的保密措施。 数据加密的术语有 :
明文,即原始的或未加密的数据。通过加密算法对其进行加密,加密算法的输入信息为明文和密钥;
密文,明文加密后的格式,是加密算法的输出信息。加密算法是公开的,而密钥则是不公开的。密文不应为无密钥的用户理解,用于数据的存储以及传输;
密钥,是由数字、字母或特殊符号组成的字符串,用它控制数据加密、解密的过程;
加密,把明文转换为密文的过程;
加密算法,加密所采用的变换方法;
解密,对密文实施与加密相逆的变换,从而获得明文的过程;
解密算法,解密所采用的变换方法。
加密技术是一种防止信息泄露的技术。它的核心技术是密码学,密码学是研究密码系统或通信安全的一门学科,它又分为密码编码学和密码分析学。
任何一个加密系统都是由明文、密文、算法和密钥组成。发送方通过加密设备或加密算法,用加密密钥将数据加密后发送出去。接收方在收到密文后,用解密密钥将密文解密,恢复为明文。在传输过程中,即使密文被非法分子偷窃获取,得到的也只是无法识别的密文,从而起到数据保密的作用。
例:明文为字符串:
AS KINGFISHERS CATCH FIRE
(为简便起见,假定所处理的数据字符仅为大写字母和空格符)。假定密钥为字符串:
ELIOT
加密算法为:
1) 将明文划分成多个密钥字符串长度大小的块(空格符以+表示)
AS+KI NGFIS HERS+ CATCH +FIRE
2) 用0~26范围的整数取代明文的每个字符,空格符=00,A=01,...,Z=26:
3) 与步骤2一样对密钥的每个字符进行取代:
0512091520
4) 对明文的每个块,将其每个字符用对应的整数编码与密钥中相应位置的字符的整数编码的和模27后的值(整数编码)取代:
举例:第一个整数编码为 (01+05)%27=06
5) 将步骤4的结果中的整数编码再用其等价字符替换:
FDIZB SSOXL MQ+GT HMBRA ERRFY
如果给出密钥,该例的解密过程很简单。问题是对于一个恶意攻击者来说,在不知道密钥的情况下,利用相匹配的明文和密文获得密钥究竟有多困难?对于上面的简单例子,答案是相当容易的,不是一般的容易,但是,复杂的加密模式同样很容易设计出。理想的情况是采用的加密模式使得攻击者为了破解所付出的代价应远远超过其所获得的利益。实际上,该目的适用于所有的安全性措施。这种加密模式的可接受的最终目标是:即使是该模式的发明者也无法通过相匹配的明文和密文获得密钥,从而也无法破解密文。 传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。
DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。
DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。 多年来,许多人都认为DES并不是真的很安全。事实上,即使不采用智能的方法,随着快速、高度并行的处理器的出现,强制破解DES也是可能的。公开密钥加密方法使得DES以及类似的传统加密技术过时了。公开密钥加密方法中,加密算法和加密密钥都是公开的,任何人都可将明文转换成密文。但是相应的解密密钥是保密的(公开密钥方法包括两个密钥,分别用于加密和解密),而且无法从加密密钥推导出,因此,即使是加密者若未被授权也无法执行相应的解密。
公开密钥加密思想最初是由Diffie和Hellman提出的,最着名的是Rivest、Shamir以及Adleman提出的,通常称为RSA(以三个发明者的首位字母命名)的方法,该方法基于下面的两个事实:
1) 已有确定一个数是不是质数的快速算法;
2) 尚未找到确定一个合数的质因子的快速算法。
RSA方法的工作原理如下:
1) 任意选取两个不同的大质数p和q,计算乘积r=p*q;
2) 任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。
3) 确定解密密钥d:
(d * e) molo(p - 1)*(q - 1) = 1
根据e、p和q可以容易地计算出d。
4) 公开整数r和e,但是不公开d;
5) 将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:
C = P^e molo r
6) 将密文C解密为明文P,计算方法为:
P = C^d molo r
然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。
下面举一简单的例子对上述过程进行说明,显然我们只能选取很小的数字。
例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过(d*11)molo(8) = 1。
计算出d =3。
假定明文为整数13。则密文C为
C = P^e molo r
= 13^11 molo 15
= 1,792,160,394,037 molo 15
= 7
复原明文P为:
P = C^d molo r
= 7^3 molo 15
= 343 molo 15
= 13
因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行签名,以便接收方能确定签名不是伪造的。假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。
密文C为:
C = ECB(DCA(P))
B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P)) /*DCB和ECB相互抵消*/
= P /*DCB和ECB相互抵消*/
这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没
有人,即使是B也不能伪造A的签名。 前言
随着信息化的高速发展,人们对信息安全的需求接踵而至,人才竞争、市场竞争、金融危机、敌特机构等都给企事业单位的发展带来巨大风险,内部窃密、黑客攻击、无意识泄密等窃密手段成为了人与人之间、企业与企业之间、国与国之间的安全隐患。
市场的需求、人的安全意识、环境的诸多因素促使着我国的信息安全高速发展,信息安全经历了从传统的单一防护如防火墙到信息安全整体解决方案、从传统的老三样防火墙、入侵检测、杀毒软件到多元化的信息安全防护、从传统的外部网络防护到内网安全、主机安全等。
传统数据加密技术分析
信息安全传统的老三样(防火墙、入侵检测、防病毒)成为了企事业单位网络建设的基础架构,已经远远不能满足用户的安全需求,新型的安全防护手段逐步成为了信息安全发展的主力军。例如主机监控、文档加密等技术。
在新型安全产品的队列中,主机监控主要采用外围围追堵截的技术方案,虽然对信息安全有一定的提高,但是因为产品自身依赖于操作系统,对数据自身没有有效的安全防护,所以存在着诸多安全漏洞,例如:最基础的手段拆拔硬盘、winpe光盘引导、USB引导等方式即可将数据盗走,而且不留任何痕迹;此技术更多的可以理解为企业资产管理软件,单一的产品无法满足用户对信息安全的要求。
文档加密是现今信息安全防护的主力军,采用透明加解密技术,对数据进行强制加密,不改变用户原有的使用习惯;此技术对数据自身加密,不管是脱离操作系统,还是非法脱离安全环境,用户数据自身都是安全的,对环境的依赖性比较小。市面上的文档加密主要的技术分为磁盘加密、应用层加密、驱动级加密等几种技术,应用层加密因为对应用程序的依赖性比较强,存在诸多兼容性和二次开发的问题,逐步被各信息安全厂商所淘汰。
当今主流的两大数据加密技术
我们所能常见到的主要就是磁盘加密和驱动级解密技术:
全盘加密技术是主要是对磁盘进行全盘加密,并且采用主机监控、防水墙等其他防护手段进行整体防护,磁盘加密主要为用户提供一个安全的运行环境,数据自身未进行加密,操作系统一旦启动完毕,数据自身在硬盘上以明文形式存在,主要靠防水墙的围追堵截等方式进行保护。磁盘加密技术的主要弊端是对磁盘进行加密的时间周期较长,造成项目的实施周期也较长,用户一般无法忍耐;磁盘加密技术是对磁盘进行全盘加密,一旦操作系统出现问题。需要对数据进行恢复也是一件让用户比较头痛的事情,正常一块500G的硬盘解密一次所需时间需要3-4个小时;市面上的主要做法是对系统盘不做加密防护,而是采用外围技术进行安全访问控制,大家知道操作系统的版本不断升级,微软自身的安全机制越来越高,人们对系统的控制力度越来越低,尤其黑客技术层层攀高,一旦防护体系被打破,所有一切将暴露无疑。另外,磁盘加密技术是对全盘的信息进行安全管控,其中包括系统文件,对系统的效率性能将大大影响。
驱动级技术是信息加密的主流技术,采用进程+后缀的方式进行安全防护,用户可以根据企事业单位的实际情况灵活配置,对重要的数据进行强制加密,大大提高了系统的运行效率。驱动级加密技术与磁盘加密技术的最大区别就是驱动级技术会对用户的数据自身进行保护,驱动级加密采用透明加解密技术,用户感觉不到系统的存在,不改变用户的原有操作,数据一旦脱离安全环境,用户将无法使用,有效提高了数据的安全性;另外驱动级加密技术比磁盘加密技术管理可以更加细粒度,有效实现数据的全生命周期管理,可以控制文件的使用时间、次数、复制、截屏、录像等操作,并且可以对文件的内部进行细粒度的授权管理和数据的外出访问控制,做到数据的全方位管理。驱动级加密技术在给用户的数据带来安全的同时,也给用户的使用便利性带来一定的问题,驱动级加密采用进程加密技术,对同类文件进行全部加密,无法有效区别个人文件与企业文件数据的分类管理,个人电脑与企业办公的并行运行等问题。
❻ 勒索病毒加密文件怎么解开
1、如果不小心中了勒索病毒,那么你的文件会被加密,后缀名会变成.crypt,而且无法打开。
2、病毒会在文件夹下生成警告图片,打开病毒生成的图片,会看到一堆英文。
3、还有的警告图片是这个样子。
4、用网络翻译翻译这些内容,会看到病毒作者想要比特币。
5、以目前行情来说,1比特币兑换人民币3870元,我想大多数人也不想给作者汇款。
6、如果你试图破解这些加密文件,只能时徒劳,因为它用了高强度的非对称加密算法。
7、先别慌,卡巴斯基实验室已经推出了解密程序,能解密大部分文件,上面提供下载。
8、下载好解密工具,运行,点击start scan开始扫描,解密程序会全硬盘搜索,会花些时间,请耐心等待。
❼ 勒索病毒加密文档解密是什么
加密勒索类病毒是黑客用来劫持用户资产或资源并以此为条件向用户勒索钱财的一种恶意病毒。
病毒开发者为了为了隐藏身份和提高追踪难度,在支付方式上更加隐蔽,会要求用户使用虚拟货币比特币(BTCoin)去支付,否则将可能永远无法打开被加密的文件。从大多数加密勒索病毒的执行过程中看一般都是会向远程CC主机取得加密密钥,再暗中加密受害者电脑上的文件和档案。