导航:首页 > 文档加密 > java加密算法哪个好

java加密算法哪个好

发布时间:2022-05-13 02:43:28

java最常用的几种加密算法

简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

⑵ 分享Java常用几种加密算法

简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。广泛用于加密和解密技术,常用于文件校验。校验?不管文件多大,经过MD后都能生成唯一的MD值。好比现在的ISO校验,都是MD校验。怎么用?当然是把ISO经过MD后产生MD的值。一般下载linux-ISO的朋友都见过下载链接旁边放着MD的串。就是用来验证文件是否一致的。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

⑶ java 加密 算法 哪种好 知乎

sha1,主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)

⑷ java web开发用户注册时密码加密一般用什么技术

MD5加密,这是一种不可逆的加密算法,即一旦进行MD5加密算法,不能再得到原始的密码

开发者可以将用户输入的密码进行MD5加密后,再与数据库中存储的加密后的密码比较,即可知道密码的准确性。

若想找回密码,一种即可以重置密码,即有一个默认的密码。重置后,可以自己再修改密码;另一种即可以通过其他方面的验证后,来录入一个新密码。现在很多都是使用邮箱验证或是手机随机验证,验证成功后,可以设置新密码

⑸ java加密的几种方式

朋友你好,很高兴为你作答。

首先,Java加密能够应对的风险包括以下几个:

1、核心技术窃取

2、核心业务破解

3、通信模块破解

4、API接口暴露

本人正在使用几维安全Java加密方式,很不错,向你推荐,希望能够帮助到你。

几维安全Java2C针对DEX文件进行加密保护,将DEX文件中标记的Java代码翻译为C代码,编译成加固后的SO文件。默认情况只加密activity中的onCreate函数,如果开发者想加密其它类和方法,只需对相关类或函数添加标记代码,在APK加密时会自动对标记的代码进行加密处理。

与传统的APP加固方案相比,不涉及到自定义修改DEX文件的加载方式,所以其兼容性非常好;其次Java函数被完全转化为C函数,直接在Native层执行,不存在Java层解密执行的步骤,其性能和执行效率更优。

如果操作上有不明白的地方,可以联系技术支持人员帮你完成Java加密。

希望以上解答能够帮助到你。

⑹ Java中常用的加密算法有哪些

可以用MD5,也可以用EAS。

⑺ 我想把java文件先加密然后打包,请高手指教怎么加密,有那种好的加密算法吗

RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1

这样最终得到三个数: n d e

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。

rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。

<二>实践

接下来我们来一个实践,看看实际的操作:
找两个素数:
p=47
q=59
这样
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,满足e<t并且e和t互素
用perl简单穷举可以获得满主 e*d%t ==1的数d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最终我们获得关键的
n=2773
d=847
e=63

取消息M=244我们看看

加密:

c=M**d%n = 244**847%2773
用perl的大数计算来算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d对M加密后获得加密信息c=465

解密:

我们可以用e来对加密后的c进行解密,还原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e对c解密后获得m=244 , 该值和原始信息M相等。

<三>字符串加密

把上面的过程集成一下我们就能实现一个对字符串加密解密的示例了。
每次取字符串中的一个字符的ascii值作为M进行计算,其输出为加密后16进制
的数的字符串形式,按3字节表示,如01F

代码如下:

#!/usr/bin/perl -w
#RSA 计算过程学习程序编写的测试程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

测试一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦点(xfocus)
N=2773 D=847 E=63
原始串:安全焦点(xfocus)
加密串:
解密串:安全焦点(xfocus)

<四>提高

前面已经提到,rsa的安全来源于n足够大,我们测试中使用的n是非常小的,根本不能保障安全性,
我们可以通过RSAKit、RSATool之类的工具获得足够大的N 及D E。
通过工具,我们获得1024位的N及D E来测试一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

设原始信息
M=

完成这么大数字的计算依赖于大数运算库,用perl来运算非常简单:

A) 用d对M进行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d对M加密后信息为:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e对c进行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的机器上计算了约5秒钟)

得到用e解密后的m= == M

C) RSA通常的实现
RSA简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用RSA 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。

最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一个简单的RSA算法实现JAVA源代码:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在这里提供两个版本的RSA算法JAVA实现的代码下载:

1. 来自于 http://www.javafr.com/code.aspx?ID=27020 的RSA算法实现源代码包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 来自于 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的实现:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代码包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 编译好的jar包

另外关于RSA算法的php实现请参见文章:
php下的RSA算法实现

关于使用VB实现RSA算法的源代码下载(此程序采用了psc1算法来实现快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript实现: http://www.ohdave.com/rsa/
参考资料:http://www.lenovonet.com/proct/showarticle.asp?id=118

⑻ 几种加密算法在java中的应用

简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。广泛用于加密和解密技术,常用于文件校验。校验?不管文件多大,经过MD后都能生成唯一的MD值。好比现在的ISO校验,都是MD校验。怎么用?当然是把ISO经过MD后产生MD的值。一般下载linux-ISO的朋友都见过下载链接旁边放着MD的串。就是用来验证文件是否一致的。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

⑼ Java 加密解密的方法都有哪些

加密解密并非java才有的,所有编程语言都有加密和解密。

目前的加密解密主要可分为以下2大类:

  1. 对称秘钥加密:如DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法等。其主要特点是加密方和解密方都有同一个密码,加密方和解密方可以使用秘钥任意加密解密。

  2. 非对称密码加密:这种加密方式加密方仅有加密秘钥,对加密后的密文无法反向解密,解密方仅有解密秘钥,无法对明文进行加密。


另外还有一些摘要算法,比如MD5和HASH此类算法不可逆,但经常用来作为确认字段或者对一些重要匹配信息签名防止明文内容被修改。

⑽ JAVA使用什么加密算法和解密算法好

简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。广泛用于加密和解密技术,常用于文件校验。校验?不管文件多大,经过MD后都能生成唯一的MD值。好比现在的ISO校验,都是MD校验。怎么用?当然是把ISO经过MD后产生MD的值。一般下载linux-ISO的朋友都见过下载链接旁边放着MD的串。就是用来验证文件是否一致的。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

阅读全文

与java加密算法哪个好相关的资料

热点内容
哪里有专门注册app实名的 浏览:273
魔爪mx稳定器app去哪里下载 浏览:469
excel如何批量处理电话号码加密 浏览:324
ark命令 浏览:39
seal是不是对称密钥算法 浏览:29
免费学习的app在哪里下载 浏览:177
rfid与单片机 浏览:590
5s相当于安卓什么手机 浏览:690
哈佛商学院pdf 浏览:978
app的ip哪里买 浏览:909
移动天文台app在哪里下载 浏览:924
phpjsonencode乱码 浏览:587
t3的服务器名是什么几把 浏览:69
高中算法语句 浏览:549
安卓充电接头坏如何直接线 浏览:2
mcu编译成库 浏览:296
python官网访问不了了 浏览:98
库卡逻辑编程 浏览:919
加密币驱动 浏览:982
怎么解压后的文件夹没有激活工具 浏览:809