‘壹’ 简述相向运动的基本生物力学原理
1描述:人体肢体为增加全身活动的协调性或增加动作效果而绕某一轴进行的一定幅度的转动!
特征:1减小肢体的转动惯量和增加肌力距,可以增加角加速度;2摆动动作与主体动作之间应当互相配合;3摆动肢体的适时制动是动量矩合理转移的关键。
2描述:人们将这种克服阻力或自体位移过程中,肢体依次加速与制动,使末端产生极大速度的动作形式叫鞭打动作。
特征:1参与鞭打的关节符合运动的顺序性;2注意小关节的作用;3鞭打动作是一个关节主动产生新的冲量距的过程;4鞭打动作受到解剖结构制约。
3描述:肢体末端环节与外界发生作用时,
特征:1延长受力时间,减小冲击力对人体的作用;2促使非机械能的产生与利用;3缓冲动作与解刨特点有关;4利用器械增加缓冲效果。
4描述:人体腾空时,由于肌群的收缩使身体两部分朝着相反的方向转动,这种动作形式叫做相向动作。
特征:1相向动作是人体腾空后自动化的过程;2通过调整人体的转动惯量控制动作的角速度;3肌肉收缩形式是超等长收缩;4遵守大关节带动小关节的原理。
5描述:通过扣踢击打方式,使人体四肢动能向器械实现转移的动作形式
特征:1为增大对器械的冲击力,一方面增大身体末端或器械的动量,另一方面减少身体末端或器械与器械撞击的作用时间。2为减小外界或器械对身体的冲击力,通常需要延长冲击动作中力的作用时间!
6力学因素:1支撑面。支撑面是支撑部位和其所包围的面积,支撑面越大,其平衡的稳定性越高;2重心高度,重心越低,稳定性越好;3体重,体重对平衡也有一定的影响,其稳定程度用稳定系数K来表示,除了这三种力学因素外,还有影响它的生物学因素:(1)人体不能绝对静止(2)人体的补偿动作(3)人体具有自我控制、调节和恢复平衡的能力(4)人体平衡受心理因素的影响等。
分析题
1花样滑冰运动员在冰面上的加速转动与减速转动是改变转动惯量的结果。运动员通过肢体的伸展与收缩来增大转动惯量和减小转动惯量。当运动员的四肢由伸展到收缩时,其转动惯量减小,则在冰面上的旋转速度增大,当运动员的四肢由收缩到伸展时,其转动惯量增大,则相应的旋转速度减小。
2以顺时针旋转为例。当足球在空气中既有平动又有旋转时,足球表面附近的空气由于有粘性将随足球一起转动,形成绕足球的环流。当环流与平动的流动叠加后,在足球的左边的空气的合速度较远前方的空气原有的速度大,而足球右边的合速度小,根据伯努利定律,足球左边的压强小,右边的压强大,合成为指向左边的合压强,它能使足球的运动方向发生改变,使运动轨迹发生偏转,形成弧线。
3由牛顿第二定律得:F=m.a当采用大负荷力量训练时,合外力约为零,既加速度约为零,此时动作缓慢,动作完成的周期长,无法达到训练爆发力的效果,易导致运动性疲劳,但可使肌原纤维增粗,增加最大力量;当采用适宜符合力量训练时,F=Fn-mg=m.a,既在提高每次完成动作的周期时,每次训练都使负荷产生一个向上的加速度,这样不仅训练了肌肉力量,更增加里爆发力,且不宜受伤。
论述题
1滞空技术其实质就是背弓技术,人体腾空时,人体重心的轨迹不发生改变,在由背弓到伸展的过程中,身体其他部分的运动轨迹发生了改变,产生了所谓的二次腾空,使身体控制的范围增大,发力的时间延长,从视觉上给人一种停顿的感觉。
2十字支撑时,由于身体重力大,重力臂较长,造成重力矩很大,这需要强大的肌肉力量才能完成。高度的肌紧张集中在肩关节处,肩关节内收缩,肩带肌群起固定作用,属于大强度的静力性用力动作,易导致疲劳,造成肌肉力量不足,动作失败。
3(1)相向运动是人体在空中自动化的过程。例如,正面躯体扣球,背弓是维持身体在空中平衡的补偿性动作,是一种自动化过程。
(2)通过调整肢体的转动惯量控制动作的角速度。例如,单杠后空翻两周下。在整个腾空过程中,转动惯量和角速度都在随时间变化,但两者的乘积不变,始终维持动量守恒。
(3)肌肉的收缩形式是超等长收缩。例如,挺身式跳远。从完成空中动作机制分析,作为引起相向运动动力肌群的准备姿势,预先拉长原动肌是极为必要的,肌肉的收缩形式是典型的超等长收缩
(4)遵守大关节带动小关节的原理。例如,正面躯体扣球,关节的顺序是髋肩腕指。
4人体的转动惯量与人体质量,质量分布和转轴位置有关。由于人体完成某一转动动作时,人体的质量相对恒定,因此,人体的转动惯量由人体的质量分布和转轴位置决定。人体的质量分布与人体的身高和运动的姿势紧密相关。空翻类运动项目的运动员身材普遍较矮,例如,体操运动员矮小,其转动惯量J就小,就容易翻转。
‘贰’ 生物力学的应用前景
生物力学是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支。其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。
生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题。依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。
生物力学的基本任务是应用物理力学的理论和方法来研究生物和人体在宏观和微观水平上的力学性质和行为,分析发生在生命活动过程中的各种力学现象和过程,了解生物和人体一部分相对于另一部分以及整个机体在空间和时间上发生位移和运动的力学规律。
生物力学是一门新兴学科,尽管对其中个别问题的研究有相当悠久的历史。一般认为,1967年在瑞士召开第一次国际生物力学研究会议是该学科诞生的标志。在科学的发展过程中,生物学和力学相互促进和发展着。
哈维在1615年根据流体力学中的连续性原理,按逻辑推断了血液循环的存在,并由马尔皮基于1661年发现蛙肺微血管而得到证实;材料力学中着名的扬氏模量是扬为建立声带发音的弹性力学理论而提出的;流体力学中描述直圆管层流运动的泊松定理,其实验基础是狗主动脉血压的测量;黑尔斯测量了马的动脉血压,为寻求血压和失血的关系,在血液流动中引进了外周阻力的概念,同时指出该阻力主要来自组织中的微血管;弗兰克提出了心脏的流体力学理论;施塔林提出了物质透过膜的传输定律;克罗格由于对微循环力学的贡献,希尔由于肌肉力学的贡献而先后(1920,1922)获诺贝尔生理学或医学奖。到了20世纪60年代,生物力学成为一门完整、独立的学科。
现代生物力学大约起源于20世纪60年代末,生物力学和运动生物力学发展进入了形成和发展时期。在这一时期专家们对于人和动物运动的生物力学特性进行了积极的研究。
下面一些学者的科学研究广为人知:亚历山大1970年的《生物力学》;1974年武科布罗多维奇对于动物运动进行了数学模拟,并因此促进了机器人制造技术的发展;1968年希利杰博兰德创建了有关动物以均匀步法进行运动的理论;1968年苏霍诺夫创建了陆地脊椎动物运动的一般体系;哈顿有关人支撑运动体系调控机制的研究;米勒有关人运动生物力学问题的研究。
1967年召开了第一次国际生物力学学术讨论会。1973年正式成立了国际生物力学学会(International Society of Biomechanics,ISB),这标志着生物力学学科的正式建立。
‘叁’ 运动生物力学发展的四个阶段是如何划分的
运动生物力学发展的四个阶段是划分如下:
1、第一阶段是从出生到两岁半。
2、第二阶段从两岁半到五岁半,也叫“早儿童期”。
3、第三阶段是当孩子六岁时,一般来说,他们的这些基础的运动机能应该让他们能够正常地进入第三个阶段。即“晚儿童期”的过渡性机能运动期。
4、第四阶段是十岁以后,孩子进入少年期,然后进入青年期。这个阶段的正常发育水平应该是走向“特殊运动机能发育”的阶段,即培育特殊运动才能阶段。
生物力学的背后
生物力学是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支。其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。
生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题。依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。
‘肆’ 生物力学的基本概念 什么是应力应变
生物力学的应力应变就是应力与应变的统称。
“应力是力,单位为牛顿等。 应变是长度,单位是米等。
应力应变的曲线的横坐标是应变,纵坐标是外加的应力。曲线的形状反应材料在外力作用下发生的脆性、塑性、屈服、断裂等各种形变过程。这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线外形相似,但是坐标不同。
‘伍’ 什么是生物力学基础
生物力学 (biomechanics )生物力学是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支。其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。 生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题。依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。
在科学的发展过程中,生物学和力学相互促进和发展着。哈维在1615年根据流体力学中的连续性原理,按逻辑推断了血液循环的存在,并由马尔皮基于1661年发现蛙肺微血管而得到证实;材料力学中着名的扬氏模量是扬为建立声带发音的弹性力学理论而提出的;流体力学中描述直圆管层流运动的泊松定理,其实验基础是狗主动脉血压的测量;黑尔斯测量了马的动脉血压,为寻求血压和失血的关系,在血液流动中引进了外周阻力的概念,同时指出该阻力主要来自组织中的微血管;弗兰克提出了心脏的流体力学理论;施塔林提出了物质透过膜的传输定律;克罗格由于对微循环力学的贡献,希尔由于肌肉力学的贡献而先后(1920,1922)获诺贝尔生理学或医学奖。到了20世纪60年代,生物力学成为一门完整、独立的学科。
编辑本段生物力学的分类
生物固体力学
生物固体力学是利用材料力学、弹塑性理论、断裂力学的基本理论和方法,研究生物组织和器官中与之相关的力学问题。在近似分析中,人与动物骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。 20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学以及应力套方法和先测弹力法等检测技术都已应用于骨力学研究。骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物,骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高。体现了骨以最少的结构材料来承受最大外力的功能适应性。 木材和昆虫表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由多糖、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。 生物固体力学中关于骨的研究,可以追溯到19世纪,大量的研究者对骨组织进行了研究,直到19世纪末,Wollf提出了着名的Wollf's Law. 他认为骨组织是一种自优化的组织,其结构会随着外载的变化而逐渐变化,从而达到最优的状态。以后,研究者进行了大量研究,基于此定律提出了不少的理论及数学模型。其中较为着名教授有S.C Cowin ,D. R Carter , Husikes。在国内,吉林大学的朱兴华教授也做了大量工作。
生物流体力学
生物流体力学是研究生物心血管系统、消化呼吸系统、泌尿系统、内分泌以及游泳、飞行等与水动力学、空气动力学、边界层理论和流变学有关的力学问题。 人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、湍流、渗流和两相流等流动型式相近。在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于微血管直径与红细胞直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显着。 人体内血液的流动大都属于层流,在血液流动很快或血管很粗的部位容易产生湍流。在主动脉中,以峰值速度运动的血液勉强处于层流状态,但在许多情况下会转变成湍流。尿道中的尿流往往是湍流。而通过毛细血管壁的物质交换则是一种渗流。对于血液流动这样的内流,因心脏的搏动血液流动具有波动性,又因血管富有弹性故流动边界呈不固定型。因此,体内血液的流动状态是比较复杂的。 对于外流,流体力学的知识也用于动物游泳的研究。如鱼的体型呈流线型,且易挠曲,可通过兴波自我推进。水洞实验表明,在鱼游动时的流体边界层内,速度梯度很大,因而克服流体的粘性阻力的功率也大。小生物和单细胞的游动,也是外流问题。鞭毛的波动和纤毛的拍打推动细胞表面的流体,使细胞向前运动。精子用鞭毛游动,水的惯性可以忽略,其水动力正比于精子的相对游动速度。原生动物在液体中运动,其所受阻力可以根据计算流场中小颗粒的阻力公式(斯托克斯定律)得出。 此外,空气动力学的原理与方法常用来研究动物的飞行。飞机和飞行动物飞行功率由两部分组成:零升力功率和诱导功率。前者用来克服边界层内的空气粘性阻力;后者用来向下加速空气,以提供大小等于飞机或飞行动物重量的升力。鸟在空中可以通过前后拍翅来调节滑翔角度,这与滑翔机襟翼调节的作用一样。风洞已用于研究飞行动物的飞行特性,如秃鹫、蝙蝠的滑行性能与模型滑翔机非常相似。
运动生物力学
运动生物力学是用静力学、运动学和动力学的基本原理结合解剖学、生理学研究人体运动的学科。用理论力学的原理和方法研究生物是个开展得比较早、比较深入的领域。 在人体运动中,应用层动学和动力学的基本原理、方程去分析计算运动员跑、跳、投掷等多种运动项目的极限能力,其结果与奥林匹克运动会的记录非常相近。在创伤生物力学方面,以动力学的观点应用有限元法,计算头部和颈部受冲击时的频率响应并建立创伤模型,从而改进头部和颈部的防护并可加快创伤的治疗。 人体各器官、系统,特别是心脏—循环系统和肺脏—呼吸系统的动力学问题、生物系统和环境之间的热力学平衡问题、特异功能问题等也是当前研究的热点。生物力学的研究,不仅涉及医学、体育运动方面,而且已深入交通安全、宇航、军事科学的有关方面。生物力学的研究要同时从力学和组织学、生理学、医学等两大方面进行研究,即将宏观力学性质和微观组织结构联系起来,因而要求多学科的联合研究或研究人员具有多学科的知识。
‘陆’ 简述运动生物力学参数及其采集
运动生物力学在体育科学学科体系中研究内容丰富,研究问题复杂,领域宽广,涉及到生物学、力学、体育学等学科的交叉,从而形成了良好的学科互补与融合,促进了运动生物力学学科的进步和发展。随着测试手段的改进和现代高科技的发展,运动生物力学的发展任重而道远。纵观国内外运动生物力学的研究领域,可以看到该学科的发展趋势是: 一基础研究。研究人体基本体育动作的生物力学原理如走、跑、跳的生物力学,研究人体运动器系的生物力学,如膝关节的运动学与动力学、脊柱的生物力学、肌肉活动时肌电对复杂运动中的肌力评价,神经肌肉对运动的支配、运动控制、运动能量等;生物力学在康复诊断评价中的研究,活体结构下的材料力学和弹性力学,生物材料的本构方程,关节受力的形态分析和关节界面的数学力学模型,研究人体运动动作的神经肌肉控制和反馈,矫正动作的生物力学机制等。
二应用研究。包括对优秀运动员各项动作技术的生物力学诊断(技术分析)、运动技术的优化、生物力学的技术在不同运动项目训练中的应用、教学实践与训练中的力学问题、教学方法方面的生物力学、运动过程中各肌群(原动肌、协同肌、对抗肌)工作特点(参加工作的实践顺序、力量大小等)的研究、运动器系损伤的生物力学机制及物理康复手段的研究、运动生物力学与选材研究,以及研究、设计符合人体生物力学原理的运动器材及体育锻炼的各类健身用品等。
三方法学及测试手段的研究。包括:高速录象开始应用,录象解析代替了一部分影片解析;专向技术测试的传感器有所进展,如弹力调节器可安装于弹跳板上调节弹力大小;测试数据采集计算机化和参数遥测技术研究;多指标、多学科的综合测试及同步测试;影像解析中图象识别技术的研究;适合于测量活体系统生物力学参数的新方法、新手段、新仪器的研究;测量参数数字化过程的分析方法的研究。
‘柒’ 鞭打动作的动作形式及生物力学原理
鞭打动作的生物力学原理的基础其实就是动量传递的结果,一端动量向质量较小的一端传递(通过制动),使另一端获得较大的运动速度。人体鞭打动作中是通过角动量在相邻关节间的传递实现的。起于相邻关节的肌肉收缩力,使远端环节产生角加速度,而远端环节力通过肌肉收缩作用于近端环节,使其制动,在制动的过程中,近端环节的角动量传递给了远端,加上肌肉主动发力的过程,使得远端环节的速度大大加快。大概就是这个意思吧。
‘捌’ 运动生物力学有哪五项基本任务
运动生物力学有哪五项基本任务
一般来说,不同运动项目的指标是不同的。一般有速度、力量、角度指标及其派生指标构成。可以用专业的分析软件获得这些指标。动作效果和运动效果密切相关,一般来说,动作效果好,运动效果就好,要具体情况具体分析;如果出现反常就要分析出出现差错的原因,以利于指导运动实践!
首先用能量守恒求取末速度: mg△h = (1/2)mv² v = √(2g△h) = √[2×10×(3.2-0.7)] = √50 m/s 落地时,根据动量与冲量的转换计算冲击力: mv = Ft 60×√50 = F·0.4 解得F = 150√50 = 1060.66 N 因此运动员没有受伤。