1. 麻烦哪位发一下《R语言初学者指南》《数据挖掘导论》或《R语言实战-机器学习与数据分析》的pdf,谢谢您!
2. 怎么学习用r语言进行数据挖掘
首先R是一种专业性很强的统计语言,如果想学得快一些的话,基本的统计学知识要懂,不然很多东西会掌握的比较慢。
掌握基本语法和操作,推荐国内的已经翻译的比如《R语言实战》《R语言编程艺术》,这个过程中最好结合一些小例子来做一些分析的东西。如果需要可视化的话,强烈不推荐学习R本身的作图系统,实在是太不友好了.....还是用ggplot2吧。
掌握了上面的,就可以深入一些了,如果是做数据分析和可视化,推荐《ggplot2:数据分析与图形艺术》,这个才是作图的神器啊.....如果是空间分析相关的,推荐《Applied Spatial Data Analysis with R》,这个如果可以的话看英文版,而且要有地学的一些知识背景,中文版翻译的太次了,尽量不要看。数据挖掘机器学习之类的,可以看看比如《数据挖掘与R语言》、《机器学习——实用案例解析》,不过我觉得这几本书没上面的那几本好,但是可以大概看看是咋回事,最好还是看看专门的相关书籍,熟悉各种算法和流程,到时候搜索R的package,照着文档和例子搞定,不是特别难。
-
3. 《基于R语言数据挖掘的统计与分析》pdf下载在线阅读全文,求百度网盘云资源
《基于R语言数据挖掘的统计与分析》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1XUAtM1-Fb-igAVYq_nZtlQ
4. 求《R语言实战》全文免费下载百度网盘资源,谢谢~
《R语言实战》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1l4j98ELscMCHhfUd9Qxn2w
5. 老师有没有 R语言与数据挖掘最佳实践和经典案例 的电子版
不知不觉我跟R已经认识1年了,在这一周年的日子里,写篇纪念文章。
以前我并未对统计软件有特殊的偏好,spss、sas、eviews都在用,三个中稍倾向于spss,主要因为它比较简单,sas的学习难度和应用条件(模块很多,文件太大)是我所难以接受的,eviews只在时间序列里用。那时更关注于具体的理论学习,不过在往深了学的时候,会有一个疑问,如果我在现实中要实现这些比较新的内容该怎么办?(商业软件一般没那么新的前沿的内容),这些复杂的公式对于没什么编程基础的我来说要实现起来真是难上加难。也是去年这时候,有一个曾经在学院任教的老师(现在是加拿大英属哥伦比亚大学终身教授)回来给我们上了一个月的课,在这一个月的时间里,我接触了R语言。
接下来的一年里(现在依然如此),我始终处在自学R的阶段,虽然辛苦也受益良多,一方面是终于可以摆脱傻瓜软件的束缚(用了R之后,我基本不用spss了),另一方面也是最重要的是R镜像站的文档让我学了太多以前没接触的前沿知识并通过R语言进行了实践,这一切在以前都是不可想象的。
说实在的我的R水平还是处于基础阶段(虽然我已掌握了几乎所有传统统计学方法和数据挖掘算法的R语言实现),目前在文本挖掘,高级编程上与专业人士还存在很大的差距,不过我会继续努力。
R语言在中国的普及程度与国外简直是没法比,据我所知,目前高校用R作分析少之又少,企业普及率也低。不过,R的影响正在不断扩大,统计之都举办的R语言会议已经到第5届了,而且去年的参会阵容已经相当豪华了(谢邦昌都去了),我相信R的前景会越来越好,当然也希望我的R能力能更快的提高。
下面是转的数据挖掘研究院的一篇文章(是篇翻译文章),是讲facebook和google的研究人员如何用R的。
在R用户组织的主题为“R与预测分析科学”的panel会议上,有来自工业界的四位代表发表了讲话,介绍各自在工业界是如何应用R进行数据挖掘。他们分别是:
Bo Cowgill, Google
Itamar Rosenn, Facebook
David Smith, Revolution Computing
Jim Porzak, The Generations Network
他们分别介绍了在各个公司是如何使用R进行预测分析,R作为分析工具的优势和劣势,并且提供了学习案例,以下是对他们的介绍的相关总结。
Panel介绍
R作为一门编程语言在以下三个方面具有很强的优势:数据处理,统计和数据可视化。和其他数据分析工具不同的是,它是由统计学家开发的,它是免费的软件,并且可以通过用户开发的包进行扩展,目前大约有2000多个包在CRAN中。
很多包可以应用在预测分析中。Jim重点介绍了 Max Kuhn 的caret包,它提供了大量的分类和回归模型,包括神经网络和朴素贝叶斯模型。
Bo Cowgill, Google
根据Bo Cowgill 的介绍,R是google最流行的统计分析包,事实上,google也是R基础的捐助者。他讲述道:R最好的事情是,它是统计学家发明的。它最糟糕的事情是,它是统计学家发明的。无论如何,他很乐观地看待R开发者社区的发展,R文档也逐步在改进,它的性能也在逐步提高。
Google主要使用R进行数据探索和构建模型原型,它并不是应用在生产系统,在Bo的团队中,R主要运行在桌面环境中。Bo主要根据以下的流程使用R:(1)使用其他的工具提取数据;(2)将数据加载到R中;(3)使用R建模分析;(4)在生产环境中使用c 或者python实现结果模型。
Itamar Rosenn, Facebook
Itamar介绍了facebook数据团队使用R的情况,他回答了新用户提数的两个问题:预测用户是否保持在某个数据点,如果他们停留,如何预测他们在三个月之后是否还会停留。
对于第一个问题,Itamar的团队使用递归划分推断出仅仅两个数据点被预测出来用户是否保留在facebook上:(1)新用户拥有多个会话;(2)输入用户基本信息时。
对于第二个问题,他们使用最小角度回归方法建立逻辑回归模型(lars包),根据三个类别的行为发现用户三个月的活动:(1)用户被其他用户访问的频率;(2)第三方应用程序使用的频率;(3)即将访问该站点的用户。
David Smith, Revolution Computing
David的公司,R改革计算,不仅仅使用R,而且R是他们的核心业务。David描述道:他们对R的贡献类似于redhat对linux 的贡献。他的公司处理使用R遇到的一些问题,例如,(1)支持老版本软件,即向下兼容;(2)通过他们的ParallelR套件可以支持并行计算。
David展示了他们的生命科学客户是如何使用R通过randomForest包对基因组数据集进行分类处理,以及如何使用他们的foreach包对分类树分析进行并行处理。
他还提到他们和其他公司合作将R应用在生产环境中,将特定的脚本放在服务器上,用户通过客户端调用该脚本进行数据处理。
Jim Porzak, The Generations Network
Jim简单介绍了如何使用R进行市场分析。尤其是,Jim还使用flexclust为sun公司的客户数据进行聚类分析,并且应用该结果数据识别高价值销售的主导业务。
在Q&A环节,还有很多提问,并且进行了回答。
1在使用R的过程中,如何解决内存限制问题?
R工作区是在RAM上,因此他的大小是受到限制的。
办法:
(1) 使用R的数据库连接功能(例如RMySQL),对数据进行切片处理
(2) 抽样处理
(3) 在独立的服务器或者在amazon的云计算环境中运行脚本
2R如何与其他工具和语言进行交互?
CRAN里面有一些包提供了和matlab,splus,SAS,excel的交互接口,另外,还提供了与python和java的接口包(Rpy和RJava)。
6. 《Python数据分析与挖掘实战》epub下载在线阅读全文,求百度网盘云资源
《Python数据分析与挖掘实战》(张良均)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1WwF3Vi3vszdZYBKKw7Y0HQ
书名:Python数据分析与挖掘实战
作者:张良均
豆瓣评分:7.6
出版社:机械工业出版社
出版年份:2016-1
页数:335
内容简介:
10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。
本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。
基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。
实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。
作者简介:
张良均 ,资深大数据挖掘专家和模式识别专家,高级信息项目管理师,有10多年的大数据挖掘应用、咨询和培训经验。为电信、电力、政府、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。此外,他精通Java EE企业级应用开发,是广东工业大学、华南师范大学、华南农业大学、贵州师范学院、韩山师范学院、广东技术师范学院兼职教授,着有《神经网络实用教程》、《数据挖掘:实用案例分析》、《MATLAB数据分析与挖掘实战》《R语言数据分析与挖掘实战》等畅销书。
7. 《R语言实战(第2版)》pdf下载在线阅读,求百度网盘云资源
《R语言实战(第2版)》([美] Robert I. Kabacoff)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1LGgzzjw4XSz159P0dCubFA
书名:R语言实战(第2版)
作者:[美] Robert I. Kabacoff
译者:王小宁
豆瓣评分:9.1
出版社:人民邮电出版社
出版年份:2016-5
页数:556
内容简介:
本书注重实用性,是一本全面而细致的R指南,高度概括了该软件和它的强大功能,展示了使用的统计示例,且对于难以用传统方法处理的凌乱、不完整和非正态的数据给出了优雅的处理方法。作者不仅仅探讨统计分析,还阐述了大量探索和展示数据的图形功能。新版做了大量更新和修正,新增了近200页内容,介绍数据挖掘、预测性分析和高级编程。
作者简介:
作者简介:
Robert I. Kabacoff
R语言社区着名学习网站Quick-R的维护者,现为全球化开发与咨询公司Management研究集团研发副总裁。此前,Kabacoff博士是佛罗里达诺瓦东南大学的教授,讲授定量方法和统计编程的研究生课程。Kabacoff还是临床心理学博士、统计顾问,擅长数据分析,在健康、金融服务、制造业、行为科学、政府和学术界有20余年的研究和统计咨询经验。
译者简介:
王小宁
中国人民大学统计学院14级硕士,16级博士,统计之都副主编,中国人民大学数据挖掘中心分布式计算负责人,研究兴趣包括统计机器学习和缺失数据。
刘撷芯
中国人民大学统计学院13级硕士,爱荷华大学商学院16级博士,中国人民大学数据挖掘中心核心成员之一,研究兴趣包括统计机器学习和文本分析。
黄俊文
2014年毕业于中山大学数学系,2016年毕业于加州大学圣地亚哥分校统计学专业,统计之都成员,易易网创始人之一,目前关注计算机科学和统计学的结合与应用,包括机器学习方法等。他致力于成为一个有趣的人。
8. 求《R语言与大数据编程实战》全文免费下载百度网盘资源,谢谢~
《R语言与大数据编程实战》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1VfVGvlRcVRwfPleEqKLJkQ
9. 求R语言实战书籍电子版百度云资源
《R语言实战》网络网盘txt 最新全集下载:
链接:
书名:R语言实战
作者:卡巴科弗 (Robert I.Kabacoff)
译者:高涛
豆瓣评分:8.8
出版社:人民邮电出版社
出版年份:2013-1
页数:388
内容简介:
数据时代已经到来,但数据分析、数据挖掘人才却十分短缺。由于“大数据”对每个领域的决定性影响,相对于经验和直觉,在商业、经济及其他领域中基于数据和分析去发现问题并作出科学、客观的决策越来越重要。开源软件R是世界上最流行的数据分析、统计计算及制图语言,几乎能够完成任何数据处理任务,可安装并运行于所有主流平台,为我们提供了成千上万的专业模块和实用工具,是从大数据中获取有用信息的绝佳工具。 本书从解决实际问题入手,尽量跳脱统计学的理论阐述来讨论R语言及其应用,讲解清晰透澈,极具实用性。作者不仅高度概括了R语言的强大功能、展示了各种实用的统计示例,而且对于难以用传统方法分析的凌乱、不完整和非正态的数据也给出了完备的处理方法。通读本书,你将全面掌握使用R语言进行数据分析、数据挖掘的技巧,并领略大量探索和展示数据的图形功能,从而更加高效地进行分析与沟通。想要成为倍受高科技企业追捧的、炙手可热的数据分析师吗?想要科学分析数据并正确决策吗?不妨从本书开始,挑战大数据,用R开始炫酷的数据统计与分析吧! 本书内容: R安装与操作
10. 数据挖掘与R语言的中文电子版 急求!!!
这本书没有电子版呀,大家都是看英文版的,看着看着就习惯了。要不你买一本叫做《数据挖掘与R语言》的书,这本书有中文版的,是一个葡萄牙的作者写的。