导航:首页 > 文件处理 > 压缩感知测量矩阵的研究

压缩感知测量矩阵的研究

发布时间:2022-06-18 08:14:11

⑴ 如何理解压缩感知

压缩感知的几个看似稀松平常,但是很关键的理论基础如下: 压缩感知最初提出时,是针对稀疏信号x,给出观测模型y=Φ*x时,要有怎么样的Φ,通过什么样的方式可以从y中恢复出x。(PS:稀疏信号,是指在这个信号x中非零元素的个数远小于其中零元素的个数。) 然而,很多信号本身并非稀疏的,比如图像信号。此时可以通过正交变换Ψ’,将信号投影到另外一个空间,而在这个空间中,信号a=Ψ'*x(analysis model)变得稀疏了。然后我们可以由模型y=Φ*a,即y=Φ*Ψ'*x,来恢复原始信号x。 后来,人们发现不仅仅能够通过正交变换,得到稀疏的信号;还可以通过一个字典D,得到稀疏信号x=D*a(synthesis model),a是稀疏的,为了增强变换后信号的稀疏性,通常D是过完备的。即模型y=Φ*x=Φ*D*a,此时记A^{CS}=Φ*D,即为感知矩阵。这个模型,是我们现在最常用的。

⑵ 如何在压缩感知中正确使用阈值迭代算法

如何在压缩感知中正确使用阈值迭代算法? 测量[2]。重构算法是依据对信号的测量和问题的稀疏性重构原始信号的技术。上述过程可以描述为 如下数学模型:设s ∈ RN 为原始信号,该信号在某组基{ψi }N 下具有稀疏表示s = Ψx,其中Ψ = i=1 [ψ1 , ψ2 , . . . , ψN ], = [x1 , x2 , . . . , xN ] ;给定测量矩阵Θ ∈ RM ×N , Θ可得到信号s的观测值y, x 由 即 y = Θs = ΘΨx 其中Φ = ΘΨ ∈ RM ×N 称为传感矩阵, 为采样数;则从观测数据y来恢复未知的稀疏向量x, M 进而恢 复原始信号s的问题可建模为下述L0 问题: x∈RN min x 0 s.t. y = Φx (1.1) 这里 x 0 为x的非零分量的个数。显然L0 问题是一个组合优化问题(NP难问题[11]) 通常将其转化到 , 一个稀疏优化问题求解: x∈RN min S(x) s.t. y = Φx (1.2) 这里S(x)是x的某个稀疏度量[16],例如对给定的q ∈ (0, 1],取S(x) = x q ,其中 x q 是x的q?准范 q 数。L0 问题(1.1)和稀疏优化问题(1.2)通常都纳入如下的正则化框架来加以研究: x∈RN min Cλ (x) y ? Φx 2 + P (x; λ) (1.3) 其中λ > 0为正则化参数, (x; λ)为罚函数。 P 不同的罚函数对应不同的压缩感知模型, 例如, (x; λ) = P 1/2 λ x 0 对应L0 问题; (x; λ) = λ x 1 对应L1 问题[8], (x; λ) = λ x 1/2 对应L1/2 问题[9], P P 等等。正则化 框架提供了压缩感知研究的一般模型。通常,我们要求罚函数P (x; λ)具有某些特别性质,例如,我们 假设: (i) 非负性: (x; λ) P 0, ?x ∈ RN ; c}有界; 0; (ii) 有界性:对任何正常数c, 集合{x : P (x; λ) (iii) 可分性: (x; λ) = P N i=1 λp(xi ), p(xi ) 且 (iv) 原点奇异性: (x; λ)在x = 0处不可导, P 但在其它点处处可导。 本文目的是:从正则化框架(1.3)出发,研究并回答以下有关压缩感知应用的四个基本问题:如 何从给定的罚函数导出压缩感知问题的阈值表示?如何根据阈值表示设计阈值迭代算法并建立其收 敛性理论? 如何应用阈值迭代算法到压缩感知问题? 如何针对不同特征的压缩传感问题选择不同形式 的阈值迭代算法?所获结论期望为压缩感知中如何正确使用阈值迭代算法提供理论依据。 2 阈值迭代算法与压缩传感 本节讨论前三个问题。作为预备, 我们首先简要介绍阈值函数与阈值迭代算法。 2.1 阈值函数 高效、 快速、 高精度的重构算法是压缩感知广泛应用的前提。 阈值迭代算法 Thresholding Iterative ( Algorithms)正是这样一类十分理想的压缩感知重构算法,它因迭代简单、可单分量处理、能有效 2 中国科学 第 40 卷 第 1 期 用于大规模高维问题而得到普遍推崇。Blumensath等[14]提出了求解近似L0 问题的Hard阈值迭代算 法, Daubechies等[15]提出了求解L1 问题的Soft阈值迭代算法, 徐宗本等[9, 10, 16]提出了求解L1/2 问题 的Half和Chalf阈值迭代算法。

⑶ 压缩感知的展望

非线性测量的压缩感知。讲压缩感知解决的线性逆问题推广到非线性函数参数的求解问题。广义的讲,非线性测量的压缩感知,可以包括以前的测量矩阵不确定性问题,量化误差问题,广义线性模型问题,有损压缩样本问题。
压缩感知在矩阵分解中的推广应用。主成分分析,表示字典学习,非负矩阵分解,多维度向量估计,低秩或高秩矩阵恢复问题。
确定性测量矩阵的设计问题。 随机矩阵在实用上存在难点。随机矩阵满足的RIP是充分非必要条件。在实际中,稀疏表示矩阵和随机矩阵相乘的结果才是决定稀疏恢复性能字典。
传统压缩感知是以稀疏结构为先验信息来进行信号恢复。当前最新进展显示数据中存在的其他的简单代数结果也作为先验信息进行信号估计。联合开发这些信号先验信息,将进一步提高压缩感知的性能。

⑷ 有人在学压缩感知吗谁知道怎么用0范数或者L1范数最小化重构原始信号或者给我文献也行

用0范数或1范数解决cs重构归属一个数学问题,犹如给定你一个公式,利用这个公式或者说原理去做出很多的算法,cs重构本归属与对0范数的求解问题上的。
但0范数属于数学上一个NP_hard问题,是无法解决的,所以不能直接用求0范数的理论去做算法,从而提出一系列基于求0范数最小的贪婪类算法。如MP,OMP等算法。,这类算法中,最为基础的算是MP算法了。贪婪算法的速度较快,但是重构效果相对较差,需要的测量数也较多,不能高效地压缩信号,并且对测量矩阵的要求更高。但总的来说,应用范围广。
数学家同时发现,求解L1范数也可以逼近与0范数的效果,即把NP_hard问题转化为线性规划问题。所以现在有很多用求L1范数原理而创造了各类算法,最典型的是BP(基追踪)算法和梯度投影稀疏重构算法。这种算法重构效果很好,但是运算量大,复杂,应用于实际上可能不大。至少得改进其算法。
还有一大类算法,我不关注,不说了。
具体那些算法怎么实现,自己去网上下程序仿真一下吧。。。。

⑸ 压缩传感的原理

核心思想是将压缩与采样合并进行,首先采集信号的非自适应线性投影 (测量值),然后根据相应重构算法由测量值重构原始信号。压缩传感的优点在于信号的投影测量数据量远远小于传统采样方法所获的数据量,突破了香农采样定理的瓶颈,使得高分辨率信号的采集成为可能。
信号的稀疏表示就是将信号投影到正交变换基时,绝大部分变换系数的绝对值很小,所得到的变换向量是稀疏或者近似稀疏的,以将其看作原始信号的一种简洁表达,这是压缩传感的先验条件,即信号必须在某种变换下可以稀疏表示。 通常变换基可以根据信号本身的特点灵活选取, 常用的有离散余弦变换基、快速傅里叶变换基、离散小波变换基、Curvelet基、Gabor 基 以及冗余字典等。 在编码测量中, 首先选择稳定的投影矩阵,为了确保信号的线性投影能够保持信号的原始结构, 投影矩阵必须满足约束等距性 (Restricted isometry property, RIP)条件, 然后通过原始信号与测量矩阵的乘积获得原始信号的线性投影测量。最后,运用重构算法由测量值及投影矩阵重构原始信号。信号重构过程一般转换为一个最小L0范数的优化问题,求解方法主要有最小L1 范数法、匹配追踪系列算法、最小全变分方法、迭代阈值算法等。
采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指导下的信息获取、存储、融合、处理及传输等成为信息领域进一步发展的主要瓶颈之一,主要表现在两个方面:
(1)数据获取和处理方面。对于单个(幅)信号/图像,在许多实际应用中(例如,超宽带通信,超宽带信号处理,THz成像,核磁共振,空间探测,等等), Nyquist采样硬件成本昂贵、获取效率低下,在某些情况甚至无法实现。为突破Nyquist采样定理的限制,已发展了一些理论,其中典型的例子为Landau理论, Papoulis等的非均匀采样理论,M. Vetterli等的 finite rate of innovation信号采样理论,等。对于多道(或多模式)数据(例如,传感器网络,波束合成,无线通信,空间探测,等),硬件成本昂贵、信息冗余及有效信息提取的效率低下,等等。
(2)数据存储和传输方面。通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,显然,这样的方式造成很大程度的资源浪费。另外,为保证信息的安全传输,通常的加密技术是用某种方式对信号进行编码,这给信息的安全传输和接受带来一定程度的麻烦。
综上所述:Nyquist-Shannon理论并不是唯一、最优的采样理论,研究如何突破以Nyquist-Shannon采样理论为支撑的信息获取、处理、融合、存储及传输等的方式是推动信息领域进一步往前发展的关键。众所周知:(1)Nyquist采样率是信号精确复原的充分条件,但绝不是必要条件。(2)除带宽可作为先验信息外,实际应用中的大多数信号/图像中拥有大量的structure。由贝叶斯理论可知:利用该structure信息可大大降低数据采集量。(3) Johnson-Lindenstrauss理论表明:以overwhelming性概率,K+1次测量足以精确复原N维空间的K-稀疏信号。
由D. Donoho(美国科学院院士)、E. Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即,压缩感知或压缩传感(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。该理论指出:对可压缩的信号可通过远低于Nyquist标准的方式进行采样数据,仍能够精确地恢复出原始信号。该理论一经提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。CS理论的研究尚属于起步阶段,但已表现出了强大的生命力,并已发展了分布CS理论(Baron等提出),1-BIT CS理论(Baraniuk等提出),Bayesian CS理论(Carin等提出),无限维CS理论(Elad等提出),变形CS理论(Meyer等提出),等等,已成为数学领域和工程应用领域的一大研究热点。

⑹ 压缩感知和矩阵分解的异同

UbiComp 不是机器学习的会议。没经过严格证明的就不能说他俩是等价的,虽然长得有点像。
压缩感知是个很大的toppic,你问的这个我更愿意称之为 sparse coding。强行问两样东西的异同没啥意义,因为是两个不同的东西。
1. 矩阵填充的目标函数原本是

但是由于有 rank 的约束这个问题不是凸的,于是用 trace norm 来代替,但是还是不好算,于是用 以及 来代替trace norm。
矩阵分解也是个很大的topic,分解之后形成的矩阵有可能有特殊某些意义。
2. spase coding 是为了从数据中学一组过完备的基来稀疏表示原先的样本。一般要求基 的第i列 。 它的目标是稀疏表示。
所以矩阵分解和sparse coding的目标并不一样,是两个不同的东西,彼此联系很少。

⑺ 压缩感知的历史背景

尽管压缩感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科学家于2004 年提出的。但是早在上个世纪,相关领域已经有相当的理论和应用铺垫,包括图像处理、地球物理、医学成像、计算机科学、信号处理、应用数学等。
可能第一个与稀疏信号恢复有关的算法由法国数学家Prony 提出。这个被称为的Prony 方法的稀疏信号恢复方法可以通过解一个特征值问题,从一小部分等间隔采样的样本中估计一个稀疏三角多项式的非零幅度和对应的频率。而最早采用基于L1范数最小化的稀疏约束的人是B. Logan。他发现在数据足够稀疏的情况下,通过L1范数最小化可以从欠采样样本中有效的恢复频率稀疏信号。D. Donoho和B.Logan 是信号处理领域采用L1范数最小化稀疏约束的先驱。但是地球物理学家早在20 世纪七八十年代就开始利用L1范数最小化来分析地震反射信号了。上世纪90 年代,核磁共振谱处理方面提出采用稀疏重建方法从欠采样非等间隔样本中恢复稀疏Fourier 谱。同一时期,图像处理方面也开始引入稀疏信号处理方法进行图像处理。在统计学方面,使用L1范数的模型选择问题和相关的方法也在同期开始展开。
压缩感知理论在上述理论的基础上,创造性的将L1范数最小化稀疏约束与随机矩阵结合,得到一个稀疏信号重建性能的最佳结果。
压缩感知基于信号的可压缩性, 通过低维空间、低分辨率、欠Nyquist采样数据的非相关观测来实现高维信号的感知,丰富了关于信号恢复的优化策略,极大的促进了数学理论和工程应用的结合 。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。

⑻ 压缩感知理论中,投影矩阵是指观测矩阵还是指稀疏化表示矩阵

应该是观测矩阵

⑼ 压缩感知高斯测量矩阵不能精确重构怎么办

观测矩阵的设计是压缩感知的关键部分,
针对随机高斯观测矩阵进行研究分析。
针对观测矩阵的设计原则,
对观测矩阵的不同部分设计不同的权值,
并且运用奇异值分解方法

阅读全文

与压缩感知测量矩阵的研究相关的资料

热点内容
模式识别中文pdf 浏览:774
c语言平均数字编译错误 浏览:170
单片机算交流 浏览:45
php自适应网站 浏览:467
2b2t服务器怎么获得权限 浏览:815
c语言javaphp 浏览:804
程序员技术不分高低吗 浏览:619
dos不是内部或外部命令 浏览:709
PC机与单片机通讯 浏览:675
二级加密图 浏览:113
压缩机异音影响制冷吗 浏览:711
德斯兰压缩机 浏览:490
程序员太极拳视频 浏览:531
网上购买加密锁 浏览:825
安卓为什么软件要隐私 浏览:83
虚拟主机管理源码 浏览:811
java图形图像 浏览:230
单片机输出口电平 浏览:487
java配置数据库连接 浏览:479
java多态的体现 浏览:555