导航:首页 > 文件处理 > 压缩机防喘振的控制

压缩机防喘振的控制

发布时间:2022-04-26 10:50:24

❶ 什么是空压机的防喘振控制

还可以看出,若入口导叶开度不变,空压机流量和排气压力关系成一固定曲线。当排气压力增大,空压机操作点则沿该固定曲线移动,流量值易移至喘振区;若流量减少,空压机操作点也会沿该固定曲线移动,排气压力比值也极易移至喘振区。防喘振控制需要综合考虑压力(压比)和流量,形成一个设定值。该设定值随着上述各参数的变化而自动变化流量来调节。为避免压力大、流量小而引起喘振,可调节入口导叶的开度,使空压机的压力和流量维持在稳定工作范围内。导叶的控制在恒压控制时采用空压机出口压力控制入口导叶开度,在某些空压机中导叶受电机过载保护控制,一般采用电机过载保护回路输出和出口压力控制回路输出高选值通过反馈来控制导叶开度。

❷ 防喘阀的工作原理

防喘阀的工作原理是在离心压缩机突然减速时,通过喘振阀通气软管将节气门后的低压压力传递到访喘振阀压力反馈接头上,打开喘振阀单向截止膜片,使增压器压气机前后压力平衡,避免增压器喘振。

离心压缩机在输出压力一定而流量减小到某一数值时,就将发生喘振。为了防止喘振发生,要保持流量不进入喘振区。压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。

防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。

取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。

(2)压缩机防喘振的控制扩展阅读

离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。

①结构紧凑、重量轻,排气量范围大;

②易损件少,运转可靠、寿命长;

③排气不受润滑油污染,供气品质高;

④大排量时效率高、且有利于节能。

❸ 请教各位大侠,离心压缩机的防喘振实现原理是什么

离心压缩机在输出压力一定而流量减小到某一数值时,就将发生喘振。为了防止喘振发生,要保持流量不进入喘振区。
压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。完善的防喘振装置应根据压缩机出口压力和流量两个信号来进行控制。

❹ 离心式压缩机防喘振的措施有哪些

最重要的是安装防喘阀;还有设置段间冷却器,降低合成工艺气的温度;保持冷冻系统的稳定;保持机组的稳定运行,避免开车或加负荷时升压太快,停车或减负荷时转速太快。

❺ 解决离心式压缩机喘振有哪些方式

喘振的根本原因是,低转速、高压头;;低流量,高压头。操作中处理很简单:增加入口流量,降低出口压头,提转速。注意:所指的流量和压头包括每个段间。不仅指最后的出口。至于从设备和仪表联锁上预防,需要专门机构设计处理。

❻ 压缩机喘振原因

原因:
1.
喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。产品一般都附有压力-流量特性曲线,据此可确定喘振点、喘振边界线或喘振区。流体机械的喘振会破坏机器内部介质的流动规律性,产生机械噪声,引起工作部件的强烈振动,加速轴承和密封的损坏。一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。为防止喘振,必须使流体机械在喘振区之外运转。在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。当多台机器串联或并联工作时,应有各自的防喘振调节装置。
2.
常见原因:烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。;两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差);风机长期在低出力下运转。
另,喘振(surge)是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害。

❼ 离心式压缩机喘振现象发生的原因是什么如何防止

喘振是离心式压缩机的固有特性。当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向系统管网流动。如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小,此时就会发生喘振现象。
操作者应具备标注喘振线的压缩机性能曲线,随时了解压缩机工况点处在性能曲线图上的位置。为偏于运行安全,可在比喘振线的流量大出5%~10%的地方加注一条防喘振线,以提醒操作者注意。
降低运行转速,可使流量减少而不致进人喘振状态,但出口压力随之降低。 在首级或各级设置导叶转动机构以调节导叶角度,使流量减少时的进气冲角不致太大,从而避免发生喘振。
在压缩机出口设置旁通管道,如生产中必须减少压缩机的输送流量时,让多余的气体放空,或经降压后仍回进气管,宁肯多消耗流量与功率,也要让压缩机通过足够的流量,以防进入喘振状态
在压缩机进口安置温度、流量监视仪表,出口安置压力监视仪表,一旦出现异常或喘振及时报警,最好还能与防喘振控制操作联动与紧急停车联动。
运行操作人员应了解压缩机的工作原理,随时注意机器所在的工况位置,熟悉各种监测系统和调节控制系统的操作,尽量使机器不致迅入喘损状态。一日进入喘振应立即加大流量退出喘振或立即停机。停机后,应经开缸检查确无隐患,方可再开动机器。

❽ 如何摆脱离心式制冷压缩机喘振现象

离心式制冷压缩机属于速度型压缩机,是一种叶轮旋转式的机械。它是靠高速旋转的叶轮对气体做功,以提高气体的压力。那么。离心式制冷压缩机发生喘振现象该怎么办你?看完这篇文章,可以让大家彻底摆脱离心式制冷压缩机喘振现象。

离心式制冷压缩机的特点:

(1)外形尺寸小、重量轻、占地面积小。

(2)动平衡特性好,振动小。

(3)磨损部件少,连续运行周期长。

(4)传热性能高。

(5)易于实现多级压缩和节流,实现多种蒸发温度。

(6)能够经济地进行无级调节。

(7)若用经济性高的工业汽轮机直接驱动节能效果更好。

(8)转速较高,对轴端密封要求高。

(9)当冷凝压力较高时会发生喘振现象。

(10)制冷量较小时,效率较低。

一、喘振产生的机理

离心压缩机的基本工作原理是利用高速旋转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得压力能和速度能。在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。

扩压器流道内的边界层分离现象:扩压器流道内气流的流动,来自叶轮对气流所做功转变成的动能,边界层内气流流动,主要靠主流中传递来的动能,边界层内气流流动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。

当主流传递给边界层的动能不足以使之克服压力差继续前进时,最终边界层的气流停滞下来,进而发生旋涡和倒流,使气流边界层分离。气体在叶轮中的流动也是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。

当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。

扩压器同样存在旋转脱离。在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,流动严重恶化,使压缩机出口排气压力突然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口排气压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。

而实际上压缩机的总负荷很小,限制了压缩机的排量,压缩机的排量又慢慢减小,气体又产生倒流,如此反复,在系统中产生了周期性的气流振荡现象,这种现象称为喘振。

压缩机达到最小排量点而产生严重的气流旋转脱离是内因,而压缩机的性能曲线状况和工况点的位置是条件,内因只有在条件的促成下,才能发生特有的现象——喘振。

离心冷水机组运行在部分负荷时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小。而冷却水温由于冷却塔未改变而维持不变,则此时就可能发生旋转失速或喘振。

喘振是速度型离心式压缩机的固有特性。因此对于任何一台离心式压缩机,当排量小到某一极限点时就会发生该现象。冷水机组是否在喘振点附近运行,主要取决于机组的运行工况。在什么状态发生喘振只有通过对机器的试验,即不断减少其流量,才可以测出具体的喘振点。

由于压缩机叶轮流道内气体流量的减少,按照压缩机的特性曲线,其运行的工况点引向高压缩比方向。这时气流方向的改变在叶轮入口产生较大的正冲角,使得叶轮叶片上的非工作面产生严重的气流“脱离现象”,气动损失增大,叶轮出口处产生负压区,引起冷凝器上部或蜗壳内原有的正压气流沿压降方向“倒灌”,退回叶轮内,使叶轮流道内的混合流量增大,叶轮恢复正常工作。

如此时压缩机工况点仍未脱离喘振点(区),又将出现上述气流的“倒灌”。气流这种周期性的往返脉动,正是压缩机喘振的根本原因。

二、喘振的危害性

喘振是离心式压缩机的运行工况在小流量、高压比区域中所产生的一种不稳定的运行状态。压缩机喘振时,将出现气流周期性振荡现象。喘振带给压缩机严重的破坏,会导致下列严重后果:

(1)使压缩机的性能显着恶化,气体参数(压力、排量) 产生大幅度脉动。

(2)噪声加大。

(3)大大加剧整个机组的振动。喘振使压缩机的转子和定子的元件经受交变的动应力:压力失调引起强烈的振动,使机组中心偏移,轴承磨损,密封间隙增大;甚至发生转子和定子元件相碰等:叶轮动应力加大。

(4)电流发生脉动。

(5)小制冷量机组的脉动频率比大型机组高,但振幅小。

不同于一般的机械振动,在压缩机出口产生气流的反复倒灌、吐出、来回撞击,使得主电机交替出现满载和空载,电流表指针或压缩机出口压力表指针产生大幅度无规律的强烈抖摆和跳动。压缩机转子在机内沿轴向来回窜动,并伴有金属摩擦和撞击声响。

三、防喘振措施

1热气旁通喘振防护原理

一旦进入喘振工况,应立即采取调节措施,降低出口压力或增加入口流量。从以上喘振产生的机理来看,在离心式冷水机组中,压比和负荷是影响喘振的两大因素。当负荷越来越小,小到某一极限点时,便会发生喘振,或者当压比大到某一极限点时,便会发生喘振。

用热气旁通来进行喘振防护,是通过喘振保护线来控制热气旁通的开启或关闭,使机组远离喘振点,达到保护的目的。从冷凝器连接到蒸发器一根连接管,当运行点到达喘振保护点而未达到喘振点时,通过控制系统打开热气旁通电磁阀,从冷凝器的热气排到蒸发器,降低了压比,同时提高了排气量,从而避免了喘振的发生。

2改变压缩机转速

压缩机转速改变,压缩机的性能曲线将随着移动,可以增加稳定工况区域,它适用于蒸汽轮机、燃气轮机拖动的机组,是一种比较经济的调节方法,只是调节后的工作点不一定是最高效率点。但对电动机拖动的机组,为了便于变速,就要用直流机组或采用变频方法,这会使设备大大复杂化,同时造价也高。

3多级压缩

多级压缩以降低压缩机转速。一般多级机器中任何一级发生喘振,都会影响到整台机器的正常工作。采用多级压缩,在同样的压比工况下,可大大降低压缩机的转速,增大稳定工况区域。

4采用转动的扩压器调节

流量减小时,一般在扩压器中首先产生严重的旋转脱离而导致喘振。在流量变化时,如果能相应改变扩压器流道的进口几何角,以适应改变了的工况,使冲角α不致很大,则可使性能曲线向小流量区大幅度移动,扩大稳定工况范围,使喘振流量大为降低,达到防喘振的目的。该防喘振控制方式,已在开利的产品中得到具体的应用,但低负荷时仍须采用热气旁通。

5可移动式扩压腔

上面提到,在离心式冷水机组中喘振发生的原因为压比和负荷。当机组运行的压比一定时(提升力),机组的运行负荷将影响机组是否发生喘振。对于离心机组来说,当运行负荷降低时,压缩机的导叶逐渐关闭,吸气量降低,如果扩压腔的通道面积不变,则气体的流速降低:当气体的流速无法克服扩压腔的阻力损失时,气流会出现停滞,由于气体动能的下降,转化的压力能也降低:当气流体压力小于排气管网的压力时,气流发生倒流,喘振发生。

四、结论

热气旁通、改变压缩机转速、多级压缩、转动的扩压器调节以及散流滑块设计均能有效避免“喘振”,对于离心式冷水机组具有较好的节能效果。

❾ 离心式压缩机喘振现象,发生的原因是什么,如何防止

喘振是离心式压缩机的固有特性。当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向系统管网流动。如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小,此时就会发生喘振现象。 操作者应具备标注喘振线的压缩机性能曲线,随时了解压缩机工况点处在性能曲线图上的位置。为偏于运行安全,可在比喘振线的流量大出5%~10%的地方加注一条防喘振线,以提醒操作者注意。 降低运行转速,可使流量减少而不致进人喘振状态,但出口压力随之降低。 在首级或各级设置导叶转动机构以调节导叶角度,使流量减少时的进气冲角不致太大,从而避免发生喘振。 在压缩机出口设置旁通管道,如生产中必须减少压缩机的输送流量时,让多余的气体放空,或经降压后仍回进气管,宁肯多消耗流量与功率,也要让压缩机通过足够的流量,以防进入喘振状态 在压缩机进口安置温度、流量监视仪表,出口安置压力监视仪表,一旦出现异常或喘振及时报警,最好还能与防喘振控制操作联动与紧急停车联动。 运行操作人员应了解压缩机的工作原理,随时注意机器所在的工况位置,熟悉各种监测系统和调节控制系统的操作,尽量使机器不致迅入喘损状态。一日进入喘振应立即加大流量退出喘振或立即停机。停机后,应经开缸检查确无隐患,方可再开动机器。

❿ 离心式空气压缩机如何防止喘振

1、操作者应具备标注喘振线的压缩机性能曲线,随时了解压缩机工况点处在性能曲线图上的位置。为偏于运行安全,可在比喘振线的流量大出5%~10%的地方加注一条防喘振线,以提醒操作者注意。

2、降低运行转速,可使流量减少而不致进人喘振状态,但出口压力随之降低。在首级或各级设置导叶转动机构以调节导叶角度,使流量减少时的进气冲角不致太大,从而避免发生喘振。

3、在压缩机出口设置旁通管道,如生产中必须减少压缩机的输送流量时,让多余的气体放空,或经降压后仍回进气管,宁肯多消耗流量与功率,也要让压缩机通过足够的流量,以防进入喘振状态。

4、在压缩机进口安置温度、流量监视仪表,出口安置压力监视仪表,一旦出现异常或喘振及时报警,最好还能与防喘振控制操作联动与紧急停车联动。

5、运行操作人员应了解压缩机的工作原理,随时注意机器所在的工况位置,熟悉各种监测系统和调节控制系统的操作,尽量使机器不致迅入喘损状态。

阅读全文

与压缩机防喘振的控制相关的资料

热点内容
哪里有专门注册app实名的 浏览:273
魔爪mx稳定器app去哪里下载 浏览:469
excel如何批量处理电话号码加密 浏览:324
ark命令 浏览:39
seal是不是对称密钥算法 浏览:29
免费学习的app在哪里下载 浏览:177
rfid与单片机 浏览:590
5s相当于安卓什么手机 浏览:690
哈佛商学院pdf 浏览:978
app的ip哪里买 浏览:909
移动天文台app在哪里下载 浏览:923
phpjsonencode乱码 浏览:587
t3的服务器名是什么几把 浏览:69
高中算法语句 浏览:549
安卓充电接头坏如何直接线 浏览:2
mcu编译成库 浏览:296
python官网访问不了了 浏览:98
库卡逻辑编程 浏览:919
加密币驱动 浏览:982
怎么解压后的文件夹没有激活工具 浏览:809