⑴ 内存对齐有什么用呢,请举个例子说明一下.
CPU对内存的操作有对并的概念:
如果操作1字节的数据,可以是任意地址,如果是操作2字节的数据,如果开始地址在偶数地址,一次就可以取2字节,如果开始地址在奇数,就要2次内存操作才能完成;如果操作4字节的数据,最好开始地址在能被4整除的数值上,这样可以用一条32位的内存操作指令完成。同样,8字节的开始位置最好的能被8整除的数值上,这样可以用一条64位的内存操作指令完成。
就是说,如果对齐了,一次就可以完成,不对齐,就可能多次才能完成。编译程序处理时也有对齐处理,一般的结构体和对象等估计都有对齐的处理(把结构体或对象的开始位置定在边界上),这样,只要你在结构体里对象之间能处理好对齐,你的数据就能操作得很快。
有时你定义了一个结构体,用了若干字节,但不是8或4的倍数,但你查内存时能发现它们占用的是8或4的倍数(多用了几个字节),就是这个原因。
补充回答:
比如32位机,32根地址线,32根数据线,取数时,CPU的32根据地址线与内存的0-3号地址对齐,CPU的32位的数据线也同样,一个读取周期只能取这0-3地址的3个字节。如果你是取3-4地址的数据,CPU会自动把它分解成2次取数据操作,一次取8位的3单元和一次取8位4单元数据。
只有开始地址是0、4、8...的32位的数据操作才能一次操作完成,内存不支持从1号单元开始的4字节读,CPU和内存的数据线必须相应数据线对齐才行。
如果要没有这个限制,CPU和内存的制作成本就会高一些。况且,CPU和内存的控制总线标准是早就规定好了的,造CPU的生产出了有你这种功能的CPU,但内存不支持,必须某年某月国际上协商出了新的标准,你的这种想法才可能实现。
⑵ 对齐的计算机内存中的对齐
⒈现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
⒉对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况, 但是最常见的是如果不按照适合其平台的要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低 字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。 通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。
但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
对齐的算法:
由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。
设结构体如下定义:
struct A {
int a;
char b;
short c;
};
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。
所以使用sizeof(strcut A)值为8。
现在把该结构体调整成员变量的顺序。
struct B {
char b;
int a;
short c;
};
这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。
下面我们使用预编译指令#pragma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。
#pragma pack ⑵/*指定按2字节对齐*/
struct C {
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#pragma pack ⑴/*指定按1字节对齐*/
struct D {
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float型,其自身对齐值为4,对于double型,其自身对齐值为8,单位字节。
这里面有四个概念值:
1)数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。
2)指定对齐值:#pragma pack (value)时的指定对齐值value。
3)结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
4)数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中较小的那个值。
有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的存放起始地址%N=0.而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是 数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整 数倍,结合下面例子理解)。这样就不难理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B {
char b;
int a;
short c;
};
假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指 定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为 4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐 值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存 放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;
同理,分析上面例子C:
#pragma pack ⑵/*指定按2字节对齐*/
struct C {
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续 字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以 C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.
有 了以上的解释,相信你对C语言的字节对齐概念应该有了清楚的认识了吧。在网络程序中,掌握这个概念可是很重要的喔,在不同平台之间(比如在Windows 和Linux之间)传递2进制流(比如结构体),那么在这两个平台间必须要定义相同的对齐方式,不然莫名其妙的出了一些错,可是很难排查的哦^_^。
⑶ 如何理解 struct 的内存对齐
作为一个程序员的我来解释一下这个对齐问题,struct 的内存对齐是有一定的规则的,对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据的偏移量必须是Min(编译器被指定的对齐字节数,该数据成员的自身长度)的倍数。
也许很多新手还是很难看的懂,下面有一些比较简单的方法,整个Struct的地址必须是最大字节的整数倍,还有一点很是重要的是前面的地址必须是后面的地址正数倍,如果不是的话就进行补齐。
想要学好这个还是多去进行一些实际的操作,比较有助于进步。
⑷ 内存对齐问题
一般来说#pragma pack(8)是没用的,因为当指定对齐值和自身对齐值不同时,取较小值.而大部分基本数据类型的对齐值都不超过8.
明显是不同编译器的处理方式不同.楼主真要想搞懂,就把各个结构的实例按字节显示出来看看.
比如我在VC里,加了一段
s.a=1.0;s.b='a';s.c='b';
t.b='b';t.a=1.0;t.c='c';
unsigned char *p=(unsigned char *)(&s);
for(int i=0;i<sizeof(s);i++) printf("%x ",p[i]);
unsigned char *q=(unsigned char *)(&t);
for(i=0;i<sizeof(t);i++) printf("%x ",q[i]);
就一目了然了.
⑸ 请问什么叫内存对齐谢谢
内存上有一个缺口,不同版本的缺口位置不同,和内存插槽上有一个隔断一一对应。例如早一点的sdrom内存有2个缺口,对应的sdrom内存插槽上有2个隔断;ddr1内存有一个缺口,ddr1插槽有1个隔断。你怎么判定呢?先确定你主板型号,看主板支持什么型号内存,购买对应内存,然后将内存缺口对准内存插槽上的隔断,插下去,ok。内存上的缺口就是为防反插而设计的。
另外,如果你是问c语言的内存对齐就是另外一个答案:
字,双字,和四字在自然边界上不需要在内存中对齐。(对字,双字,和四字来说,自然边界分别是偶数地址,可以被4整除的地址,和可以被8整除的地址。)
无论如何,为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;然而,对齐的内存访问仅需要一次访问。
一个字或双字操作数跨越了4字节边界,或者一个四字操作数跨越了8字节边界,被认为是未对齐的,从而需要两次总线周期来访问内存。一个字起始地址是奇数但却没有跨越字边界被认为是对齐的,能够在一个总线周期中被访问。
某些操作双四字的指令需要内存操作数在自然边界上对齐。如果操作数没有对齐,这些指令将会产生一个通用保护异常(#GP)。双四字的自然边界是能够被16 整除的地址。其他的操作双四字的指令允许未对齐的访问(不会产生通用保护异常),然而,需要额外的内存总线周期来访问内存中未对齐的数据。
⑹ 有经验的C语言程序常说的“内存对齐”,原因究竟是什么
在C语言程序开发中,有时有经验的程序员会提起“内存对齐”一词,事实上,这也是C语言中结构体的 size 不等于它所有成员 size 之和的原因(C语言中的结构体的size,并不等于它所有成员size之和,为什么?),那么,C语言程序为什么要“内存对齐”呢?
事实上,本节只是粗浅讨论,处理器的内存系统比这里描述的要复杂得多,涉及的内容也要复杂得多。不过,我们至少已经知道,在C语言程序中坚持内存对齐还是有很多好处的。
⑺ 对齐的(内存)对齐
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬
件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问
未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。 每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编
译命令#pragma pack(n),n=1,2,4,8,16 来改变这一系数,其中的n 就是你要指定的“对齐系数”。 ⒈数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset
为0 的地方,以后每个数据成员的对齐按照#pragma pack 指定的数值和这个数据成员自身长
度中,比较小的那个进行。
⒉结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进
行对齐,对齐将按照#pragma pack 指定的数值和结构(或联合)最大数据成员长度中,比较小
的那个进行。
⒊结合1、2 可推断:当#pragma pack 的n 值等于或超过所有数据成员长度的时候,这个n
值的大小将不产生任何效果。
⑻ 请教:“不能完成自动对齐图层命令,因为没有足够的内存(RAM)”是何原因
楼主遇到的这个情况属于电脑的硬件限制,建议升级内存就可以解决问题了。
麻烦采纳,谢谢!
⑼ 汇编高手来说下内存对齐背后CPU究竟是怎么操作的
内存对齐:
我们知道现代计算机体系中CPU按照双字、字、字节访问存储内存,并通过总线进行传输,若未经一定规则的对齐,CPU的访址操作与总线的传输操作将会异常的复杂,所以现代编译器中都会对内存进行自动的对齐。
1.内存对齐系数
说道内存对齐,就不得不说内存对齐系数, 对齐系数最简单的设置方法是使用 #pragma pack(n)进行设置,这部分点进链接在我的文章内有详细说明!
2.sizeof
说到内存对齐第二个不得不说的就是sizeof,它的基本作用是判断数据类型或者表达式长度,要注意的是这不是一个函数,而是一个C++中的关键字!字节数的计算在程序编译时进行,而不是在程序执行的过程中才计算出来!
3.类型的长度与数据成员对齐
你的计算机中,数据类型的长度指的就是在你的计算机中对数据类型使用sizeof得到的结果,当然这个在各种不同的编译环境下得到的结果是不同的。
比如在32位Visual Studio环境下:
cout << sizeof(char) << endl; // 1
cout << sizeof(short) << endl; // 2
cout << sizeof(int) << endl; // 4
cout << sizeof(long) << endl; // 4
cout << sizeof(double) << endl; // 8
而在64位G++编译环境下:
cout << sizeof(char) << endl; // 1
cout << sizeof(short) << endl; // 2
cout << sizeof(int) << endl; // 4
cout << sizeof(long) << endl; // 8
cout << sizeof(double) << endl; // 8
下面我将在32位Visual Studio环境下讲解数据成员对齐:
首先我们要清楚结构体struct中的成员在内存中的分配是连续的,struct内的首地址也就是struct内第一个数据成员的地址,换句话说struct内第一个数据成员离struct开始的距离offset = 0。
数据成员对齐的规则就是,而在第一个成员之后,每个成员距离struct首地址的距离 offset, 都是struct内成员自身长度(sizeof) 与 #pragma pack(n)中的n的最小值的整数倍,如果未经对齐时不满足这个规则,在对齐时就会在这个成员前填充空子节以使其达到数据成员对齐。
默认n为8时:
struct {
char a;
double b;
} myStruct;
cout << sizeof myStruct << endl; // 16
cout << (int *)&myStruct.a << endl; // 0024F898
cout << &myStruct.b << endl; // 0024F8A0(因运行时而异)
当设置n为4也就是min(sizeof(double), n) = 4 时:
#pragma pack(4)
struct {
char a;
double b;
} myStruct;
cout << sizeof myStruct << endl; // 12
cout << (int *)&myStruct.a << endl; // 0046F76C
cout << &myStruct.b << endl; // 0046F770
第一个例子时,最小值为8,填充7个字节到char a 之后。
第二个例子时,最小值为4,填充3个字节到char a之后。
4.整体对齐
编译器在进行过数据成员对齐之后,还要进行整体对齐。与数据对齐相似但不是完全相同, 如果数据对齐完成时struct的大小不是 struct内成员自身长度最大值(sizeof) 与 #pragma pack(n)中的n的最小值的整数倍。(注意这里是成员中长度最大的那个与n比较,而不是特定的一个成员。)就要在struct的最后添加空字节直到对齐。
当设置n为4也就是min(sizeof(short), n) = 2 时:
#pragma pack(4)
struct {
char a;
short b;
char c;
} myStruct;
cout << sizeof myStruct << endl; // 6
cout << (int *)&myStruct.a << endl; // 003DFED0
cout << &myStruct.b << endl; // 003DFED2
cout << (int *)&myStruct.c << endl; // 003DFED4
在上面的例子中,char a offset为0 因成员对齐占据[D0]填充[D1]共两个字节,short b是最大长度成员无需对齐占据[D2-D3]两个字节,它的offset是2,而char c的offset是4占据[D4]无需成员对齐,但此时struct的大小是2+2+1 = 5字节,不是2的整数倍,所以我们要填充空子节在最后直到struct大小达到2的整数倍,这就是整体对齐。
经过了数据成员对齐与整体对齐之后内存对齐就完成了,如果深入思考上述规则还会发现:即使是同样数目与数量的数据成员,在摆放的顺序不同时struct的大小也会不同,下面就是一个例子:
这样摆放是12字节:
却变成了8字节.png
由于这种特性,如果在网络编程或相关内存操作时如果不加以注意的话,就会造成隐秘而难以纠正的错误,请大家务必小心!