导航:首页 > 程序命令 > 命令是一种

命令是一种

发布时间:2022-04-24 20:08:28

⑴ 什么是shell命令windows系统也有shell命令吗

Shell
命令是一个用
C
语言编写的程序,它
既是一种命令语言,又是一种程序设计语言。Shell
命令还是一种应用程序,用户通过这个界面访问操作系统内核的服务。
windows系统下也有shell命令。
Windows的Shell命令又是Windows的CMD命令,而cmd命令又是原来MS-DOS系统保留下来。
WIndows下Shell命令的执行方式如下:
一般的是通过调出CMD控制台执行,对于较熟悉的可以自行编写bat批处理Shell命令,然后保存为
.bat
后缀格式文件,以Win7为例,可以通过Win键调出search
窗口,快捷执行,但不能全部使用,同时可以通过Win+R调出运行窗口来执行。
Shell
脚本介绍:
Shell
脚本(shell
script),是一种为
shell
编写的脚本程序,业界所说的
shell
通常都是指
shell
脚本,但是shell

shell
script
是两个不同的概念。

⑵ 行政法上的行政命令,政府管制的概念是什么特征又是什么

行政命令是行政主体依法要求相对人进行一定的作为或不作为的意思表示。行政命令具有强制力,它包括两类:一类是要求相对人进行一定作为的命令,如命令纳税、命令外国人出境。

另一类是要求相对人履行一定的不作为的命令,称作为禁(止)令,如因修建马路禁止通行,禁止携带危险品的旅客上车等。
特征
①行政命令由有权发布命令的行政主体作出;
②行政命令属于行政主体的一种处理行为,表现为要相对人进行一定的作为或不作为;
③行政命令是要相对人履行一定的义务,而不是赋予相对人一定的权利;
④行政命令是为相对人设定的行为规则,属于具体规则,表现在特定时间内对特定事或特定人所作的特定规范;
⑤相对人违反行政命令,可以引起行政主体对它的制裁;
⑥行政命令是依法或依职权作出的。中华人民共和国的行政命令还有一个特征,即相对人不服行政命令时不能提起行政复议或行政诉讼,只能通过申请途径解决。这和行政决定不同,相对人如不服行政决定,可以依法提起行政复议,直至行政诉讼。(应区别抽象行政命令与具体行政命令)

政府管制又称为政府规制(governmentalregulation)。管制,是政府干预市场的活动总称,关于管制的研究被视为经济学的一个正式领域。管制经济学最早是由美国着名的经济学家斯蒂格勒开创的。

⑶ 命令是一种行政公文,属于下行文吗 是对的还是错的啊

对 是的

⑷ 命令这一文种是由哪个文种演化而来的

命令是法定的行政公文的一个文种。它是应用写作的重要文体之一。它是指法定的领导机关或领导人对下级发布的一种具有强制执行效力的指挥性公文。它适用于依照法律规定公布行政法规和章程,宣布施行重大强制性行政措施以及嘉奖有关单位和人员。
命,其词义为“使”,有“使人为事”之意,作为公文,始于商朝和西周,当时以王的意志为中心的“王命文书”,都是“命”的公务文书。令,其义与“命”相似,但还有“告诫”的意思,作为正式公文使用,始于战国时期。
根据用途的不同,命令可以分为公布令、嘉奖令、任免令、通缉令、赦免令等。

⑸ 指令是一种命令语言,它用来规定cpu执行什么操作以及操作对象所在的位置

CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。有的指令中也直接包含操作数本身。提取第一阶段,提取,从存储器或高速缓冲存储器中检索指令(为数值或一系列数值)。由程序计数器(ProgramCounter)指定存储器的位置,程序计数器保存供识别目前程序位置的数值。换言之,程序计数器记录了CPU在目前程序里的踪迹。提取指令之后,程序计数器根据指令长度增加存储器单元。指令的提取必须常常从相对较慢的存储器寻找,因此导致CPU等候指令的送入。这个问题主要被论及在现代处理器的快取和管线化架构。解码CPU根据存储器提取到的指令来决定其执行行为。在解码阶段,指令被拆解为有意义的片断。根据CPU的指令集架构(ISA)定义将数值解译为指令。一部分的指令数值为运算码(Opcode),其指示要进行哪些运算。其它的数值通常供给指令必要的信息,诸如一个加法(Addition)运算的运算目标。这样的运算目标也许提供一个常数值(即立即值),或是一个空间的寻址值:暂存器或存储器位址,以寻址模式决定。在旧的设计中,CPU里的指令解码部分是无法改变的硬件设备。不过在众多抽象且复杂的CPU和指令集架构中,一个微程序时常用来帮助转换指令为各种形态的讯号。这些微程序在已成品的CPU中往往可以重写,方便变更解码指令。执行在提取和解码阶段之后,接着进入执行阶段。该阶段中,连接到各种能够进行所需运算的CPU部件。例如,要求一个加法运算,算数逻辑单元(ALU,ArithmeticLogicUnit)将会连接到一组输入和一组输出。输入提供了要相加的数值,而输出将含有总和的结果。ALU内含电路系统,易于输出端完成简单的普通运算和逻辑运算(比如加法和位元运算)。如果加法运算产生一个对该CPU处理而言过大的结果,在标志暂存器里,运算溢出(ArithmeticOverflow)标志可能会被设置。写回最终阶段,写回,以一定格式将执行阶段的结果简单的写回。运算结果经常被写进CPU内部的暂存器,以供随后指令快速存取。在其它案例中,运算结果可能写进速度较慢,但容量较大且较便宜的主记忆体中。某些类型的指令会操作程序计数器,而不直接产生结果。这些一般称作“跳转”(Jumps),并在程式中带来循环行为、条件性执行(透过条件跳转)和函式。许多指令也会改变标志暂存器的状态位元。这些标志可用来影响程式行为,缘由于它们时常显出各种运算结果。例如,以一个“比较”指令判断两个值的大小,根据比较结果在标志暂存器上设置一个数值。这个标志可借由随后的跳转指令来决定程式动向。在执行指令并写回结果之后,程序计数器的值会递增,反复整个过程,下一个指令周期正常的提取下一个顺序指令。如果完成的是跳转指令,程序计数器将会修改成跳转到的指令位址,且程序继续正常执行。许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。这个部分一般涉及“经典RISC管线”,那些实际上是在众多使用简单CPU的电子装置中快速普及(常称为微控制(Microcontrollers))。编辑本段基本结构CPU包括运算逻辑部件、寄存器部件和控制部件等。运算逻辑部件运算逻辑部件,可以执行定点或浮点的算术运算操作、移位操作以及逻辑操作,也可执行地址的运算和转换。寄存器部件寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。32位CPU的寄存器通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。专用寄存器是为了执行一些特殊操作所需用的寄存器。控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。控制部件控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器通过不同的逻辑门的组合,发出不同序列的控制时序信号,直接去执行一条指令中的各个操作。编辑本段发展历史CPU这个名称,早期是对一系列可以执行复杂的计算机程序或电脑程式的逻辑机器的描述。这个空泛的定义很容易在“CPU”这个名称被普遍使用之前将计算机本身也包括在内。诞生中央处理器(Intel)但从20世纪70年代开始,由于集成电路的大规模使用,把本来需要由数个独立单元构成的CPU集成为一块微小但功能空前强大的微处理器时。这个名称及其缩写才真正在电子计算机产业中得到广泛应用。尽管与早期相比,CPU在物理形态、设计制造和具体任务的执行上都有了戏剧性的发展,但是其基本的操作原理一直没有改变。1971年,当时还处在发展阶段的Intel公司推出了世界上第一台真正的微处理器--4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,Intel公司便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是Intel公司X86系列CPU的发展历程,就通过它来的“CPU历史之旅”。起步的角逐中央处理器(Intel)1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算的指令。由于这些指令集应用于i8086和i8087,所以人们也把这些指令集中统一称之为X86指令集。虽然以后Intel公司又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel公司在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586.686兼容CPU命名了。1979年,Intel公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。微机时代的来临中央处理器(概念图)1981年,8088芯片首次用于IBM的PC(个人电脑PersonalComputer)机中,开创了全新的微机时代。也正是从8088开始,PC的概念开始在全世界范围内发展起来。早期的CPU通常是为大型及特定应用的计算机而订制。但是,这种昂贵为特定应用定制CPU的方法很大程度上已经让位于开发便宜、标准化、适用于一个或多个目的的处理器类。这个标准化趋势始于由单个晶体管组成的大型机和微机年代,随着集成电路的出现而加速。集成电路使得更为复杂的CPU可以在很小的空间中设计和制造出来(在微米的量级)。1982年,许多年轻的读者尚在襁褓之中的时候,Intel公司已经推出了划时代的最新产品80286芯片,该芯片比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。中央处理器(AMD速龙64FX概念图)1985年,Intel公司推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz、25MHz、33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是经常说的80386DX外,出于不同的市场和应用考虑,Intel又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年,Intel推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。高速CPU时代的腾飞1990年,Intel公司推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。1989年,大家耳熟能详的80486芯片由Intel公司推出,这种芯片的伟大之处就在于它突破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到了33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。1990年,Intel公司推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486DX2由于用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。80486DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。80486DX4的时钟频率为100MHz,其运行速度比66MHz的80486DX2快40%。80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。CPU的标准化和小型化都使得这一类数字设备(香港译为“电子零件”)在现代生活中中央处理器(Intel)的出现频率远远超过有限应用专用的计算机。现代微处理器出现在包括从汽车到手机到儿童玩具在内的各种物品中。编辑本段性能指标主频主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。CPU的主频=外频×倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,也可以看到这样的例子:1GHzItanium芯片能够表现得差不多跟2.66GHz至强(Xeon)/Opteron一样快,或是1.5GHzItanium2大约跟4GHzXeon/Opteron一样快。CPU的运算速度还要看CPU的流水线、总线等等各方面的性能指标。外频外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。目前的绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈。前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。中央处理器(Intel)外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。IA-32架构必须有三大重要的构件:内存控制器Hub(MCH),I/O控制器Hub和PCIHub,像Intel很典型的芯片组Intel7501.Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMDOpteron处理器,灵活的HyperTransportI/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMDOpteron处理器就不知道从何谈起了。CPU的位和字长中央处理器(德州仪器)位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是“0”或是“1”在CPU中都是一“位”。字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。倍频系数倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应-CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Intel酷睿2核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,现在AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。缓存缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MBL3缓存的Itanium2处理器,和以后24MBL3缓存的双核心Itanium2处理器。但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MBL3缓存的XeonMP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。CPU扩展指令集CPU依靠指令来自计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分(指令集共有四个种类),而从具体运用看,如Intel的MMX(MultiMediaExtended,此为AMD猜测的全称,Intel并没有说明词源)、SSE、SSE2(Streaming-Singleinstructionmultipledata-Extensions2)、SSE3、SSE4系列和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。通常会把CPU的扩展指令集称为”CPU的指令集”。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。CPU内核和I/O工作电压从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。

⑹ CMD命令是一种代号还是这种命令的英文 谢谢

cmd是command的缩写.即命令行。

虽然随着计算机产业的发展,Windows 操作系统的应用越来越广泛,DOS 面临着被淘汰的命运,但是因为它运行安全、稳定,有的用户还在使用,所以一般Windows 的各种版本都与其兼容,用户可以在Windows 系统下运行DOS,中文版Windows XP 中的命令提示符进一步提高了与DOS 下操作命令的兼容性,用户可以在命令提示符直接输入中文调用文件。在9x系统下输入command就可以打开命令行.而在NT系统上可以输入cmd来打开,在windows2000后被cmd替代,利用CMD命令查询系统的信息或者是判断网络的好坏。来自网络

⑺ 命令是什么

和文件一样,命令也是计算机运用中的一个普通的基本概念。简单地说,命令就是向机器输入一句话,告诉机器去做某件事情。在DOS操作系统和其他各种软件系统中,命令的使用都是在提示符后面输入一串字符,然后打回车键确认。计算机接到这个命令之后,先以它能理解的“语法”去解释,如果命令“合法”,它就执行;如果不合法,它就会不懂,将显示出错误信息,请你重新输入。

这种使用命令的方式叫做“人机对话方式”。这种方式是最早的方式,也是现在应用最广泛的方式。除此之外,还有“窗口菜单”的方式,在许多应用软件和新的操作系统中使用。如WINDOWS,这种方式不需要逐个输入字符,只要将光标移到需要的菜单项后确认即可,直观方便,在DOS的高版本中有一个叫DOSSHELL.EXE的文件,运行这个文件,就可以用菜单方式进行一些较简单的DOS操作。

在DOS中,命令有3种类别:

1.内部命令

DATE、TIME、VER、DIR等都是内部命令,它们不需要单独的程序来存放,而是它们共同存放,它们共同存放在一个COMMAND.COM文件中。在DOS引导盘中,都有这个文件,DOS一启动,它就被调入内存,于是所有的内部命令就都可以使用了。

2.外部命令

外部命令都是各自由一个单独程序来贮存的,例如,FORMAT.EXE只有在命令被使用时才调入内存,并且在执行完毕后就从内存中删掉了。因此,执行外部命令时,先要找到有关文件。

3.批处理命令

在DOS中,可以把多条命令集中在一起,放在一个文件中,这种文件就叫做批处理命令文件。这种文件的扩展名就是前面讲的BAT。运行批处理命令,就是键入批处理命令文件的(主)文件名,再回车。这样,包含在文件中的多条命令就可以连续执行而无需分别输入了。DOS的可执行文件的运行方法,就是键入(主)文件名然后回车。这里可以看出,DOS命令的使用实质上就是执行可执行文件。

⑻ 程序,命令和指令有何区别

计算机程序或者软件程序(通常简称程序)是指一组指示计算机或其他具有信息处理能力装置每一步动作的指令,通常用某种程序设计语言编写,运行于某种目标体系结构上。打个比方,一个程序就像一个用汉语(程序设计语言)写下的红烧肉菜谱(程序),用于指导懂汉语的人(体系结构)来做这个菜。 通常,计算机程序要经过编译和链接而成为一种人们不易看清而计算机可解读的格式,然后运行。未经编译就可运行的程序通常称之为脚本程序程序的运行为了一个程序运行,计算机加载程序代码,可能还要加载数据,从而初始化成一个开始状态,然后调用某种启动机制。在最低层上,这些是由一个引导序列开始的。
在大多数计算机中,操作系统例如Windows等,加载并且执行很多程序。在这种情况下,一个计算机程序是指一个单独的可执行的映射,而不是当前在这个计算机上运行的全部程序。
冯诺依曼体系结构
在一台基于最常见的冯诺依曼体系结构(又称Harvard Architecture)的计算机上,程序从某种外部设备,通常是硬盘,被加载到计算机之内。 如果计算机选择冯诺依曼体系结构,那么程序就被加载入内存。 指令序列顺序执行,直到一条跳转或转移指令被执行,或者一个中断出现。所有这些指令都会改变指令寄存器的内容。
基于这种体系计算机如果没有程序的支持将无法工作。一个计算机程序是一系列指令的集合。
程序里的指令都是基于机器语言;程序通常首先用一种计算机程序设计语言编写,然后用编译程序或者解释执行程序翻译成机器语言。 有时,也可以用程序和数据程序已经被定义了。如何定义数据呢?数据可以被定义为被程序处理的信息。当我们考虑到整个计算机系统时,有时程序和数据的区别就不是那么明显了。中央处理器有时有一组微指令控制硬件,数据可以是一个有待执行的程序(参见脚本编程语言),程序可以编写成去编写其它的程序;所有这些例子都使程序和数据的比较成为一种视角的选择。有人甚至断言程序和数据没有区别。
编写一个程序去生成另外一个程序的过程被称之为原编程(Metaprogramming)。它可以被应用于让程序根据给定数据生成代码。单一一个程序可能不足以表示给定数据的所有方面。让一个程序去分析这个数据并生成新的程序去处理数据所有的方面可能会容易一些。Lisp就是一例支持这种编程模式的程序语言。
算法算法指解决某个问题的严格方法,通常还需辅以某种程度上的运行性能分析。算法可以是纯理论的,也可以由一个计算机程序实现。理论算法通常根据复杂性分为不同类别;实现的算法通常经过颇析(Profiling)以测试其性能。请注意虽然一个算法在理论上有效可行,但是一个糟糕的实现仍会浪费宝贵的计算机资源。(更详细信息,参见算法信息论,Algorithmic Information Theory)开发编写程序是以下步骤的一个往复过程:编写新的源代码,测试、分析和提高新编写的代码以找出语法和语义错误。从事这种工作的人叫做程序设计员。由于计算机的飞速发展,编程的要求和种类也日趋多样,由此产生了不同种类的程序设计员,每一种都有更细致的分工和任务。软件工程师和系统分析员就是两个例子。现在,编程的长时间过程被称之为“软件开发”或者软件工程。后者也由于这一学科的日益成熟而逐渐流行。
因此,如今程序设计员可以指某一领域的编程专家,也可以泛指软件公司里编写一个复杂软件系统里某一块的一般程序员。一组为某一软件公司工作的程序员有时会被指定一个程序组长或者项目经理,用以监督项目进度和完成日期。大型软件通常经历由系统设计师的掌握的一个长时间的设计阶段,然后才交付给开发人员。牛仔式的编程(未经详细设计)是不为人所齿的。
两种当今常见的程序开发方式之一是项目组开发方式。使用这种方式项目组里每一个成员都能对项目的进行发表意见,而由其中的某一个人协调不同意见。这样的项目组通常有15个左右的成员,这样做是为了便于管理。第二种开发方式是结对开发。
在计算机科学中,“指令”是由指令集构架定义的单个的CPU操作。在更广泛的意义上,“指令”可以是任何可执行程序的元素的表述,例如字节码。
在传统的构架上,指令包括一个操作码(opcode)--它指定了要进行什么样的操作,例如“将存储器中的内容与寄存器中的内容相加”--和零个或者更多的操作数(operand)--它可能指定了参与操作的寄存器、内存地址或者立即数(literal data)。操作数可能还包括寻址方式,它确定了操作数的含义。(原文:The operand specifiers may have addressing modes determining their meaning or may be in fixed fields.--译者)
在超常指令字(VLIW)构架中(包括很多微指令(microcode)构架)多个并发的操作和操作数在一条单独的指令中被指定。
指令的长度相差悬殊,从一些微控制器(microcontroller)中的4位(bit)到一些超长指令字系统中的几百位。大部分现代的个人计算机、大型计算机、超大型计算机中的处理器的指令尺寸在16到64位之间。在一些构架中,特别是RISC构架中,指令长度是固定的,通常与其构架的字长一致。在其他的构架中,指令有不同的长度,但通常是字节或者半个字的整数倍。
构成程序的指令很少以它在机器内部的数值形式而直接的被使用;它们可以被程序员通过汇编语言加以表示,或者,更常见的,被编译器生成。

⑼ 命令是上级对下级特定的行为或工作,也是一种什么

命令就是上级对下级的工作要求,工作安排。上级统揽全局,下级层层分配做好一个个小的工作环节。

⑽ 什么是命令

和文件一样,命令也是计算机运用中的一个普通的基本概念。简单地说,命令就是向机器输入一句话,告诉机器去做某件事情。在DOS操作系统和其他各种软件系统中,命令的使用都是在提示符后面输入一串字符,然后打回车键确认。计算机接到这个命令之后,先以它能理解的“语法”去解释,如果命令“合法”,它就执行;如果不合法,它就会不懂,将显示出错误信息,请你重新输入。

阅读全文

与命令是一种相关的资料

热点内容
算法设计中文版pdf 浏览:79
视频压缩形式怎么改 浏览:366
perl程序员 浏览:787
电子表格对比命令 浏览:608
php循环输出数组内容 浏览:748
电脑加密能不能强制关掉 浏览:616
趣味单人解压桌游 浏览:210
oppo手机谷歌服务器无法核实什么 浏览:318
软件怎么加密华为 浏览:220
扫地机怎么安装app 浏览:317
考研结合特征值计算法 浏览:514
操作系统算法综合题 浏览:150
华为程序员待遇 浏览:545
程序员带娃的图片 浏览:77
迷你云服务器怎么下载 浏览:813
福州溯源码即食燕窝 浏览:233
当乐服务器怎么样 浏览:713
nc编程软件下载 浏览:382
如何限制手机app的使用 浏览:307
安卓华为手机怎么恢复桌面图标 浏览:956