导航:首页 > 编程语言 > 卷积神经网络java

卷积神经网络java

发布时间:2022-06-24 22:12:34

Ⅰ 卷积神经网络算法是什么

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。

卷积神经网络的连接性:

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

Ⅱ 什么是卷积神经网络为什么它们很重要

Ⅲ 如何自己动手写卷积神经网络代码

没有卷积神经网络的说法,只有卷积核的说法。电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。用Photoshop等图像处理,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。?这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。?用PhotoshopCS6,可以很方便地对图像进行处理。模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。希望我能帮助你解疑释惑。

Ⅳ 卷积神经网络卷积的目的是什么深度学习神经网络学习的是什么

卷积的目的是提取特征,学习特征,深度学习的模型很多,比如RNN,CNN,ResNet,DenceNet等等,各种模型的功能也不同,主要应用在图像分类,目标识别,自然语言处理,预测等。

Ⅳ 卷积神经网络工作原理直观的解释

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了。而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。所以如果卷积核具有‘高通’性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。

Ⅵ 卷积神经网络的Java实现有哪些

卷积神经网络有以下几种应用可供研究:
1、基于卷积网络的形状识别
物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。
2、基于卷积网络的人脸检测
卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
3、文字识别系统
在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

Ⅶ cnn卷积神经网络用什么语言来写pascial

200+
这个是hinton matlab代码的C++改写版. convnetjs - Star,SAE,首选的肯定是LIBSVM这个库;RBM#47. DeepLearn Toolbox - Star,包括了CNN;C++SVM方面,Java。
2。
下面主要一些DeepLearning的GitHub项目吧;SdA#47:2200+
实现了卷积神经网络,还实现了Rasmussen的共轭梯度Conjugate Gradient算法,DBN,C/CRBM/CDBN#47:Python。
3,CAE等主流模型,实现的模型有DBN#47,可以用来做分类,语言是Python;LR等,从算法与实现上都比较全:800+
实现了深度学习网络. rbm-mnist - Star,应该是应用最广的机器学习库了,强化学习等. Deep Learning(yusugomo) - Star,Scala:1000+
Matlab实现中最热的库存,提供了5种语言的实现。
5;dA#47:500+
这是同名书的配套代码。
4. Neural-Networks-And-Deep-Learning - Star!
1,回归

Ⅷ 类脑和卷积神经网络什么关系

一、“类脑”概念

1. 在早期,类脑一般是指从软硬件上模拟生物神经系统的结构与信息加工方式。

随着软硬件技术的进步,以及神经科学与各种工程技术的多方面融合发展,脑与机的界限被逐步打破。尤其是脑机接口,在计算机与生物脑之间建立了一条直接交流的信息通道,这为实现脑与机的双向交互、协同工作及一体化奠定了基础。

随之,“类脑”的概念逐步从信息域自然地延伸到生命域。因此,以脑机互联这一独特方式实现计算或智能,也被归入“类脑研究”范畴。

2. 类脑研究是以“人造超级大脑”为目标,借鉴人脑的信息处理方式,模拟大脑神经系统,构建以数值计算为基础的虚拟超级脑;或通过脑机交互,将计算与生命体融合,构建以虚拟脑与生物脑为物质基础的脑机一体化的超级大脑,最终建立新型的计算结构与智能形态。我们不妨将类脑的英文称为Cybrain (Cybernetic Brain),即仿脑及融脑之意。其主要特征包括:


A.以信息为主要手段:用信息手段认识脑、模拟脑乃至融合脑;

B.以人造超级大脑为核心目标:包括以计算仿脑为主的虚拟超级脑,以及虚拟脑与生物脑一体化的超级大脑这两种形态;

C.以学科交叉会聚为突破方式:不单是计算机与神经科学交叉,还需要与微电子、材料、心理、物理、数学等大学科密切交叉会聚,才有更大机会取得突破。

3. 类脑研究的主要内容:

类脑研究要全面实现“懂脑、仿脑、连脑”,脑认知基础、类脑模拟、脑机互联三个方面缺一不可。因此,我们将类脑研究主要内容归纳为三个方面:信息手段认识脑、计算方式模拟脑、脑机融合增强脑(见图1)。其中,信息技术贯穿始终。

二、卷积神经网络

1. 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。

2. 卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)” 。

3. 对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络 。

在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域 。

4. 卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-like topology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(feature engineering)要求 。

三 、二者关系

人工智能时代的到来,大数据可以提供给计算机对人脑的模拟训练,强大的算力可以支撑计算机能够充分利用大数据获得更多规律,进行知识的学习。

类脑智能做的面比较广,出发点是开发一个与人脑具有类似功能的模拟大脑出来,达到人类的智慧,深度学习只是其中的一个小小的分支,是对人脑研究的一个小成果,而类脑智能相对研究的比较宽泛和深入。

而卷积神经网络只是深度学习的代表算法之一。

Ⅸ 卷积神经网络通俗理解

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络

阅读全文

与卷积神经网络java相关的资料

热点内容
程序员接私活初级 浏览:431
全无油润滑压缩机 浏览:183
代码加密常用方法 浏览:952
安卓手机如何解除已禁用 浏览:396
算法的随机性 浏览:485
高中解压体育游戏 浏览:533
androidstudior丢失 浏览:345
命令行笔记 浏览:737
360目标文件夹访问拒绝 浏览:518
3b编程加工指令 浏览:789
c8051f系列单片机选型手册 浏览:772
南昌php程序员 浏览:511
bcs命令 浏览:446
如何在服务器指向域名 浏览:417
车床编程可以做刀吗 浏览:519
ln命令源码 浏览:792
用粘液做解压手套 浏览:331
icloud收信服务器地址 浏览:500
编程思考者 浏览:453
压缩机型号用什么氟利昂 浏览:553