导航:首页 > 编程语言 > python刻画深度学习

python刻画深度学习

发布时间:2022-07-05 21:39:20

A. 如何用python画深度学习训练图比如误差,准确率变化曲线之类的

用TensorFlow啊,外加个图形包就可以了

B. python深度学习的学习方法或者入门书籍有什么

作者:issac Syndrome
来源:知乎

这是一个较完整的应用深度学习进行图像识别的学习路径,不是深度学习的捷径!
1. 模式识别
从你的描述问题的语言来看,题主似乎对模式识别没有较高的认识。
所以在做基于深度学习的图像识别前,建议先大致阅读模式识别和计算机视觉相关书籍。先理解图像这个信息本身,才来尝试识别。《学习OpenCV》,我觉得是一本非常好的上述领域入门书籍,也有python接口。
2.机器学习
不清楚你对机器学习及其相关领域的了解程度。在学习深度学习理论前,建议学习浅层模型及其理论。当然没有特别好的中文书籍。但《机器学习》,《统计学习方法》还是值得一看。外文推荐《Pattern Recognition and Machine Learning》和《Machine Learning: a Probabilistic Perspective》,后者包含了深度神经网络的章节。
3.深度学习
最后深度学习在python方面首推蒙特利尔大学的Theano(Welcome — Theano 0.6 documentation)。其有对应的英文版深度学习教程(Contents — DeepLearning 0.1 documentation),会涉及到浅层模型到深度模型的扩展。
我已经把部分文档翻译为中文,放在github上。质量不佳,如果有兴趣的可以一起加入(Syndrome777/DeepLearningTutorial · GitHub)。
另外有个斯坦福的文档,主要讲解自动编码机,有中文学者完成了翻译(UFLDL教程 - Ufldl)。
深度学习很火,使得一部分同学急切的加入。但我还是建议首先先有模式识别和机器学习的基础后再学习不迟,这样打后期才会比较给力。

C. 如何通过Python进行深度学习

作者 | Vihar Kurama

编译 | 荷叶

来源 | 云栖社区

摘要:深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!

人脑模拟

深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。

我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿

神经元

神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。

inputs 输入 outputs 输出 weights 权值 activation 激活

人工神经网络的工作原理是什么?

深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。

输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。

神经元的权重

权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。

前馈深度网络

前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。

该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。

inputlayer 输入层 hidden layer 输出层 output layer 输出层

激活函数

激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。

用数学表示为:

我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。

激活函数的速查表如下:

反向传播

在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。

prediction error 预测误差

代价函数和梯度下降

代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。

代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。

兼容代价函数

用数学表述为差值平方和:

target 目标值 output 输出值

权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。

其中η 是学习率

其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:

target 目标值 output 输出值

图表中会考虑到单系数的代价函数

initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值

在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。

多层感知器(前向传播)

这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。

现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入

要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。

将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。

现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。

步骤:

1, 乘法-添加方法。

2, 点积(输入*权重)。

3,一次一个数据点的前向传播。

4, 输出是该数据点的预测。

i的值将从相连接的神经元所对应的输入值和权重中计算出来。

i = (2 * 1) + (3* 1) → i = 5

同样地,j = (2 * -1) + (3 * 1) → j =1

K = (5 * 2) + (1* -1) → k = 9

Python中的多层感知器问题的解决

激活函数的使用

为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。

这里我们使用整流线性激活(ReLU):

用Keras开发第一个神经网络

关于Keras:

Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。

使用PIP在设备上安装Keras,并且运行下列指令。

在keras执行深度学习程序的步骤

1,加载数据;

2,创建模型;

3,编译模型;

4,拟合模型;

5,评估模型。

开发Keras模型

全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。

我们先从KERAS中的程序开始,

神经网络一直训练到150个时期,并返回精确值。

D. Python的深度学习框架有哪些

中公教育联合中科院专家打造的深度学习分八个阶段进行学习:

第一阶段AI概述及前沿应用成果介绍

详情查看深度学习。

E. Python中的深度学习是怎么一回事学完有前景吗

深度学习无疑就是在原本的基础上更深参差的去开发,一般python学出来做一个常规中级的工程师是没问题的。但是你要写更高级的语言,就要有更高级的理解和学习,才能做出更智能高级的产品。如果以后是想要往更好更大的公司发展的话是学还是有必要的

F. Python深度学习该怎么学

按照下面的课程安排学习:

阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:算法&设计模式
阶段八:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段九:机器学习、图像识别、NLP自然语言处理
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图形识别、人工智能玩具开发等。
阶段十:Linux系统&百万级并发架构解决方案
阶段十一:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。

G. python的深度学习对于普通人有必要吗

学Python对于普通人来讲能够提高职场竞争能力,办公更智能,处理数据更加方便

H. 简单的了解过Python,可以学习深度学习吗

有Python基础的话就可以进行深度学习了呢, 因为深度学习这门课程主要是对于人工智能领域的一个提升课程,所以有编程基础的话学习起来会更好一些。 不过如果之后想要走人工智能这个方向的话,还是建议先系统学习Pytthon,然后再进行深度学习课程的学习。

阅读全文

与python刻画深度学习相关的资料

热点内容
编译程序输入一个字符串 浏览:404
圆命令画法 浏览:305
如果给电脑e盘文件加密 浏览:801
javaswing项目 浏览:774
androidsdksetup 浏览:1003
pdf怎么设置中文 浏览:126
安卓手机用什么软件看伦敦金 浏览:964
魅族文件夹无名称 浏览:789
苏黎世无人机算法 浏览:872
核桃编程和小码王的融资 浏览:684
微积分教材pdf 浏览:725
写python给微信好友发消息 浏览:336
蚊帐自营米加密 浏览:420
学校推荐核桃编程 浏览:804
湖南农信app怎么导明细 浏览:473
福特abs编程 浏览:509
如何自学安卓手机 浏览:439
以太坊源码共识机制 浏览:912
单片机探测器 浏览:872
demo编程大赛作品怎么运行 浏览:52