❶ python,输入一个字符串,然后依次显示该字符串的每一个字符以及该字符的ASCII码。
data segment para
str1 db ‘one’, ’$’
str2 db ‘Two’, ’$’
str3 db ‘Three’, ’$’
str4 db ‘four’, ’$’
str5 db ‘five’, ’$’
tab dw str1,str2,str3,str4,str5
data ends
ssg segment stack
dw 256 p(?)
ssg ends
code segment para
assume cs:code,ss:ssg,ds:data
main proc far
mov ax, data
mov ds, ax
mov ah, 1 ;键盘输入
int 21h
call asc2bin
mov bl, al
mov bh, 0
dec bx
shl bx, 1
mov dx, tab[bx]
mov ah, 9
int 21h
mov ax, 4c00h
Int 21h
main endp
;将ASCII转换为二进制数
;入口:AL存放ASCII
;出口:转换后数值在AL
asc2bin proc
sub al, 30h
cmp al, 9
jbe next
sub al, 7
next: ret
asc2bin endp
end main
上面的程序是:从键盘输入1~5之间的一个数,在屏幕上显示one…five。虽然不一样,但要求差不多,希望对你有帮助!
❷ 用Python3实现表达式求值
include <malloc.h> #include <stdio.h> #include <ctype.h>//判断是否为字符的函数的头文件 #define maxsize 100 typedef int elemtype; typedef struct sqstack sqstack;//由于sqstack不是一个类型 而struct sqstack才是 char ch[7]=;//把符号转换成一个字符数组 int f1[7]=;//栈内元素优先级 int f2[7]=;//栈外的元素优先级 struct sqstack { elemtype stack[maxsize]; int top; }; void Initstack(sqstack *s) { s->top=0; } void Push(sqstack *s,elemtype x) { if(s->top==maxsize-1) printf("Overflow\n"); else { s->top++; s->stack[s->top]=x; } } void Pop(sqstack *s,elemtype *x) { if(s->top==0) printf("underflow\n"); else { *x=s->stack[s->top]; s->top--; } } elemtype Gettop(sqstack s) { if(s.top==0) { printf("underflow\n"); return 0; } else return s.stack[s.top]; } elemtype f(char c) { switch(c) { case '+': return 0; case '-': return 1; case '*': return 2; case '/': return 3; case '(': return 4; case ')': return 5; default: return 6; } } char precede(char c1,char c2) { int i1=f(c1); int i2=f(c2);//把字符变成数字 if(f1[i1]>f2[i2])//通过原来设定找到优先级 return '>'; else if(f1[i1]<f2[i2]) return '<'; else return '='; } int Operate(elemtype a,elemtype theta,elemtype b) { int sum; switch(theta) { case 0: sum=a+b; break; case 1: sum=a-b; break; case 2: sum=a*b; break; default: sum=a/b; } return sum; } EvaluateExpression() { char c; int i=0,sum=0; int k=1,j=1;//设置了开关变量 elemtype x,theta,a,b; sqstack OPTR,OPND; Initstack(&OPTR); Push(&OPTR,f('#'));//0压入栈 Initstack(&OPND); c=getchar(); if(c==ch[2]||c==ch[3]||c==ch[5]||c==ch[6])//先对+和-的情况忽略和左括号的情况 { printf("错误1 \n"); k=0; return 0; } if(c==ch[0]) c=getchar();//如果是+,把它覆盖 if(c==ch[1]) { j=0; c=getchar();//也把-号覆盖 } while(c!='#'||ch[Gettop(OPTR)]!='#') { if(isdigit(c)) { sum=0; while(isdigit(c)) { if(!j) { sum=sum*10-(c-'0');//实现了数字串前面有负号(之前是:sum=-(sum*10)-(c-'0')结果是-12+13=21) } else sum=sum*10+(c-'0'); c=getchar(); } Push(&OPND,sum);//如果还是数字先不压栈,把数字串转化成十进制数字再压栈 j=1; } else if(k) { switch(precede(ch[Gettop(OPTR)],c)) { case'<': Push(&OPTR,f(c));//把它们整型化 c=getchar(); if(c==ch[0]||c==ch[1]||c==ch[2]||c==ch[3]||c==ch[5]||c=='\n')//要除去下个是‘(’的情况 也把以运算符归到这里来 { printf("出错2\n"); k=0; return 0;//加了开关变量和返回0的值使程序更以操作 } break; case'=': Pop(&OPTR,&x); c=getchar(); if(c==ch[0]||c==ch[1]||c==ch[2]||c==ch[3]||c==ch[5]||c=='\n')//把ch[6]的情况也忽略了但此时并没有注意到右括号后面右运算符的情况 { printf("出错2\n"); k=0; return 0; } break; case'>': Pop(&OPTR,&theta); Pop(&OPND,&b); Pop(&OPND,&a);//注意这里是谁先出栈 Push(&OPND,Operate(a,theta,b)); break; } } }//在这里判断是否以运算符结束是不对的 return(Gettop(OPND)); } main() { int result; printf("输入你的算术表达式:\n"); result=EvaluateExpression(); printf("结果是 :%d\n",result); return 0; } : 本计算器利用堆栈来实现。 1、定义后缀式计算器的堆栈结构 因为需要存储的单元不多,这里使用顺序栈,即用一维数组来模拟堆栈: #define MAX 100 int stack[MAX]; int top=0; 因此程序中定义了长度为MAX的一维数组,这里MAX用宏定义为常数100,我们可以修改宏定义而重新定义堆栈的大小。 整型数据top为栈顶指示,由于程序开始时堆栈中并无任何数据元素,因此top被初始化为0。 2、存储后缀式计算器的运算数 我们定义了堆栈stack[MAX]后,就可以利用入栈操作存储先后输入的两个运算数。 下面看一下是如何实现的: int push(int i) /*存储运算数,入栈操作*/ { if(top<MAX) { stack[++top]=i; /*堆栈仍有空间,栈顶指示上移一个位置*/ return 0; } else /*堆栈已满,给出错误信息,返回出错指示*/ { printf("The stack is full"); return ERR; } } 我们在调用函数push时,如果它的返回值为0,说明入栈操作成功;否则,若返回值为ERR(在程序中说明为-1),说明入栈操作失败。 3、从堆栈中取出运算数 当程序中读完了四则运算符后,我们就可以从堆栈中取出已经存入的两个运算数,构成表达式,计算出结果。取出运算数的函数采用的正是出栈算法。在本例中,实现该算法的函数 为pop(): int pop(); /*取出运算数,出栈操作*/ { int var; /*定义待返回的栈顶元素*/ if(top!=NULL) /*堆栈中仍有数据元素*/ { var=stack[top--]; /*堆栈指示下移一个位置*/ return var; } else /*堆栈为空,给出错误信息,并返回出错返回值*/ printf("The stack is cmpty!\n"); return ERR; } 同样,如果堆栈不为空,pop()函数返回堆栈顶端的数据元素,否则,给出栈空提示,并返回错误返回值ERR。 4、设计完整的后缀式计算器 有了堆栈存储运算数,后缀式计算器的设计就很简单了。程序首先提示用户输入第一个运算数,调用push()函数存入堆栈中;而后提示用户输入第二个运算数,同样调用push()函数存入堆栈中。接下来,程序提示用户输入+,-,*,/四种运算符的一种,程序通过switch_case结构判断输入运算符的种类,转而执行不同的处理代码。以除法为例,说明程序的执行流程: case '/': b=pop(); a=pop(); c=a/b; printf("\n\nThe result is %d\n",c); printf("\n"); break; 程序判断用户输入的是除号后,就执行上述代码。首先接连两次调用pop()函数从堆栈中读出先前输入的运算数,存入整型数a和b中;然后执行除法运算,结果存入单元c中。这时需要考虑究竟谁是被除数,谁是除数。由于开始我们先将被除数入栈,根据堆栈“先进后出”的原则,被除数应该是第二次调用pop()函数得到的返回值。而除数则是第一次调用pop()函数得到的返回值。 最后程序打印出运算结果,并示提示用户是否继续运行程序: printf("\t Continue?(y/n):"); l=getche(); if(l=='n') exit(0); 如果用户回答是"n",那么结束程序,否则继续循环。 完整的程序代码如下: #include<stdio.h> #include<conio.h> #include<stdlib.h> #define ERR -1 #define MAX 100 /*定义堆栈的大小*/ int stack[MAX]; /*用一维数组定义堆栈*/ int top=0; /*定义堆栈指示*/ int push(int i) /*存储运算数,入栈操作*/ { if(top<MAX) { stack[++top]=i; /*堆栈仍有空间,栈顶指示上移一个位置*/ return 0; } else { printf("The stack is full"); return ERR; } } int pop() /*取出运算数,出栈操作*/ { int var; /*定义待返回的栈顶元素*/ if(top!=NULL) /*堆栈中仍有元素*/ { var=stack[top--]; /*堆栈指示下移一个位置*/ return var; /*返回栈顶元素*/ } else printf("The stack is empty!\n"); return ERR; } void main() { int m,n; char l; int a,b,c; int k; do{ printf("\tAriothmatic Operate simulator\n"); /*给出提示信息*/ printf("\n\tPlease input first number:"); /*输入第一个运算数*/ scanf("%d",&m); push(m); /*第一个运算数入栈*/ printf("\n\tPlease input second number:"); /*输入第二个运算数*/ scanf("%d",&n); push(n); /*第二个运算数入栈*/ printf("\n\tChoose operator(+/-/*//):"); l=getche(); /*输入运算符*/ switch(l) /*判断运算符,转而执行相应代码*/ { case '+': b=pop(); a=pop(); c=a+b; printf("\n\n\tThe result is %d\n",c); printf("\n"); break; case '-': b=pop(); a=pop(); c=a-b; printf("\n\n\tThe result is %d\n",c); printf("\n"); break; case '*': b=pop(); a=pop(); c=a*b; printf("\n\n\tThe result is %d\n",c); printf("\n"); break; case '/': b=pop(); a=pop(); c=a/b; printf("\n\n\tThe result is %d\n",c); printf("\n"); break; } printf("\tContinue?(y/n):"); /*提示用户是否结束程序*/ l=getche(); if(l=='n') exit(0); }while(1); } : #include <stdio.h> #include <conio.h> #include <malloc.h> #include <stdlib.h> #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; #define STACK_INIT_SIZE 100 //初始分配量 #define STACKINCREMENT 10 //存储空间的分配增量 typedef char ElemType; typedef ElemType OperandType; //操作数 typedef char OperatorType; typedef struct { ElemType *base; ElemType *top; int stacksize; }SqStack; Status InitStack(SqStack &S) { //构造一个空栈S S.base = (ElemType *)malloc(STACK_INIT_SIZE * sizeof(ElemType)); if(!S.base) exit (OVERFLOW); S.top = S.base; S.stacksize = STACK_INIT_SIZE; return OK; } Status GetTop(SqStack S){ ElemType e; if (S.top == S.base) return ERROR; e = *(S.top-1); return e; } Status Push (SqStack &S,ElemType e) { //插入元素e为新的栈顶元素 if (S.top - S.base >= S.stacksize){ S.base = (ElemType *) realloc ( S.base, (S.stacksize + STACKINCREMENT) * sizeof(ElemType)); if(!S.base) exit (OVERFLOW); S.top = S.base + S.stacksize; S.stacksize += STACKINCREMENT; } *S.top++ = e; return OK; } Status Pop (SqStack &S,ElemType &e){ //若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR if(S.top == S.base) return ERROR; e = * --S.top; return OK; } char In(char c,char OP[]) { if(c>=35 && c<=47) return 1; else return 0; } char OP[8]=; int m[7][7]={1,1,2,2,2,1,1, 1,1,2,2,2,1,1, 1,1,1,1,2,1,1, 1,1,1,1,2,1,1, 2,2,2,2,2,0,-1, 1,1,1,1,-1,1,1, 2,2,2,2,2,-1,0};//1 > 2 < 0 = -1 不存在 char Precede(char i,char j) { int a,b; char *p; for(p=OP,a=0;*p!='\0';p++,a++) if(*p==i) break; for(p=OP,b=0;*p!='\0';p++,b++) if(*p==j) break; if(m[a][b]==1) return '>'; else if(m[a][b]==2) return '<'; else if(m[a][b]==0) return '='; else return 'O'; } char Operate(char a,char theta,char b) { if(a>47) a=atoi(&a); if(b>47) b=atoi(&b); switch(theta) { case '+': return a+b; break; case '-': return a-b; break; case '*': return a*b; break; case '/': return a/b; break; } } OperandType EvaluateExpression() { SqStack OPTR,OPND; OperandType a,b,c; OperatorType theta; InitStack(OPTR); Push(OPTR,'#'); InitStack(OPND); c=getchar(); while (c!='#' || GetTop(OPTR)!='#') { if (!In(c,OP)) else switch(Precede(GetTop(OPTR),c)) { case '<' : Push(OPTR,c); c = getchar(); break; case '=' : Pop(OPTR,c); c = getchar(); break; case '>' : Pop(OPTR,theta); Pop(OPND,b); Pop(OPND,a); Push(OPND,Operate(a,theta,b)); break; } } return GetTop(OPND); } void main() { printf("(以#为结束符)\n"); printf("请输入:\n"); int a; a=(int)EvaluateExpression(); printf("%d",a); getch(); } : ls都正确 : C++ In Action这本书里面有表达式求值的详细项目分析. : 数据结构的书里面都有的,仔细看一下 : studyall123的只能对0到9的数字运算才有效,对于10以上的数字就不行!不知道有没有更好的方法! : 现在的人,连google一下都懒啊 : 实际上是按照逆波兰式的顺序让输入的表达式入栈,再根据运算符优先级来计算。 : lenrning!
❸ python--怎么查看模块OS里listdir()函数的源代码,也就是怎么定义istdir()的代码
去 python 官网下载 Gzipped source tar ball, 解压缩后, 你会发现 Lib/os.py 文件这行代码
from posix import *
可是没有文件叫 posix.py 啊, 到底在那 ? 其实 posix mole 是 builtin 的其中一分子,如下所示范:
>>> import sys
>>> print sys.builtin_mole_names
(*__builtin__*, *__main__*, *_ast*, *_codecs*, *_sre*, *_symtable*, *_warnings*, *_weakref*, *errno*, *exceptions*, *gc*, *imp*, *marshal*, *posix*, *pwd*, *signal*, *sys*, *thread*, *zipimport*)
>>>
所以要去 Moles 目录查找 c 代码, 你会看见 posixmole.c, 打开它看见这行代码:
{"listdir", posix_listdir, METH_VARARGS, posix_listdir__doc__},
再寻找上面所得到的 posix_listdir method, 可以找到 listdir 源代码:
static PyObject *
posix_listdir(PyObject *self, PyObject *args)
{
/* XXX Should redo this putting the (now four) versions of opendir
in separate files instead of having them all here... */
#if defined(MS_WINDOWS) && !defined(HAVE_OPENDIR)
PyObject *d, *v;
HANDLE hFindFile;
BOOL result;
.... 省略
来自puthon吧
❹ 如何用PyTorch实现递归神经网络
从 Siri 到谷歌翻译,深度神经网络已经在机器理解自然语言方面取得了巨大突破。这些模型大多数将语言视为单调的单词或字符序列,并使用一种称为循环神经网络(recurrent neural network/RNN)的模型来处理该序列。但是许多语言学家认为语言最好被理解为具有树形结构的层次化词组,一种被称为递归神经网络(recursive neural network)的深度学习模型考虑到了这种结构,这方面已经有大量的研究。虽然这些模型非常难以实现且效率很低,但是一个全新的深度学习框架 PyTorch 能使它们和其它复杂的自然语言处理模型变得更加容易。
虽然递归神经网络很好地显示了 PyTorch 的灵活性,但它也广泛支持其它的各种深度学习框架,特别的是,它能够对计算机视觉(computer vision)计算提供强大的支撑。PyTorch 是 Facebook AI Research 和其它几个实验室的开发人员的成果,该框架结合了 Torch7 高效灵活的 GPU 加速后端库与直观的 Python 前端,它的特点是快速成形、代码可读和支持最广泛的深度学习模型。
开始 SPINN
链接中的文章(https://github.com/jekbradbury/examples/tree/spinn/snli)详细介绍了一个递归神经网络的 PyTorch 实现,它具有一个循环跟踪器(recurrent tracker)和 TreeLSTM 节点,也称为 SPINN——SPINN 是深度学习模型用于自然语言处理的一个例子,它很难通过许多流行的框架构建。这里的模型实现部分运用了批处理(batch),所以它可以利用 GPU 加速,使得运行速度明显快于不使用批处理的版本。
SPINN 的意思是堆栈增强的解析器-解释器神经网络(Stack-augmented Parser-Interpreter Neural Network),由 Bowman 等人于 2016 年作为解决自然语言推理任务的一种方法引入,该论文中使用了斯坦福大学的 SNLI 数据集。
该任务是将语句对分为三类:假设语句 1 是一幅看不见的图像的准确标题,那么语句 2(a)肯定(b)可能还是(c)绝对不是一个准确的标题?(这些类分别被称为蕴含(entailment)、中立(neutral)和矛盾(contradiction))。例如,假设一句话是“两只狗正跑过一片场地”,蕴含可能会使这个语句对变成“户外的动物”,中立可能会使这个语句对变成“一些小狗正在跑并试图抓住一根棍子”,矛盾能会使这个语句对变成“宠物正坐在沙发上”。
特别地,研究 SPINN 的初始目标是在确定语句的关系之前将每个句子编码(encoding)成固定长度的向量表示(也有其它方式,例如注意模型(attention model)中将每个句子的每个部分用一种柔焦(soft focus)的方法相互比较)。
数据集是用句法解析树(syntactic parse tree)方法由机器生成的,句法解析树将每个句子中的单词分组成具有独立意义的短语和子句,每个短语由两个词或子短语组成。许多语言学家认为,人类通过如上面所说的树的分层方式来组合词意并理解语言,所以用相同的方式尝试构建一个神经网络是值得的。下面的例子是数据集中的一个句子,其解析树由嵌套括号表示:
( ( The church ) ( ( has ( cracks ( in ( the ceiling ) ) ) ) . ) )
这个句子进行编码的一种方式是使用含有解析树的神经网络构建一个神经网络层 Rece,这个神经网络层能够组合词语对(用词嵌入(word embedding)表示,如 GloVe)、 和/或短语,然后递归地应用此层(函数),将最后一个 Rece 产生的结果作为句子的编码:
X = Rece(“the”, “ceiling”)
Y = Rece(“in”, X)
... etc.
但是,如果我希望网络以更类似人类的方式工作,从左到右阅读并保留句子的语境,同时仍然使用解析树组合短语?或者,如果我想训练一个网络来构建自己的解析树,让解析树根据它看到的单词读取句子?这是一个同样的但方式略有不同的解析树的写法:
The church ) has cracks in the ceiling ) ) ) ) . ) )
或者用第 3 种方式表示,如下:
WORDS: The church has cracks in the ceiling .
PARSES: S S R S S S S S R R R R S R R
我所做的只是删除开括号,然后用“S”标记“shift”,并用“R”替换闭括号用于“rece”。但是现在可以从左到右读取信息作为一组指令来操作一个堆栈(stack)和一个类似堆栈的缓冲区(buffer),能得到与上述递归方法完全相同的结果:
1. 将单词放入缓冲区。
2. 从缓冲区的前部弹出“The”,将其推送(push)到堆栈上层,紧接着是“church”。
3. 弹出前 2 个堆栈值,应用于 Rece,然后将结果推送回堆栈。
4. 从缓冲区弹出“has”,然后推送到堆栈,然后是“cracks”,然后是“in”,然后是“the”,然后是“ceiling”。
5. 重复四次:弹出 2 个堆栈值,应用于 Rece,然后推送结果。
6. 从缓冲区弹出“.”,然后推送到堆栈上层。
7. 重复两次:弹出 2 个堆栈值,应用于 Rece,然后推送结果。
8. 弹出剩余的堆栈值,并将其作为句子编码返回。
我还想保留句子的语境,以便在对句子的后半部分应用 Rece 层时考虑系统已经读取的句子部分的信息。所以我将用一个三参数函数替换双参数的 Rece 函数,该函数的输入值为一个左子句、一个右子句和当前句的上下文状态。该状态由神经网络的第二层(称为循环跟踪器(Tracker)的单元)创建。Tracker 在给定当前句子上下文状态、缓冲区中的顶部条目 b 和堆栈中前两个条目 s1\s2 时,在堆栈操作的每个步骤(即,读取每个单词或闭括号)后生成一个新状态:
context[t+1] = Tracker(context[t], b, s1, s2)
容易设想用你最喜欢的编程语言来编写代码做这些事情。对于要处理的每个句子,它将从缓冲区加载下一个单词,运行跟踪器,检查是否将单词推送入堆栈或执行 Rece 函数,执行该操作;然后重复,直到对整个句子完成处理。通过对单个句子的应用,该过程构成了一个大而复杂的深度神经网络,通过堆栈操作的方式一遍又一遍地应用它的两个可训练层。但是,如果你熟悉 TensorFlow 或 Theano 等传统的深度学习框架,就知道它们很难实现这样的动态过程。你值得花点时间回顾一下,探索为什么 PyTorch 能有所不同。
图论
图 1:一个函数的图结构表示
深度神经网络本质上是有大量参数的复杂函数。深度学习的目的是通过计算以损失函数(loss)度量的偏导数(梯度)来优化这些参数。如果函数表示为计算图结构(图 1),则向后遍历该图可实现这些梯度的计算,而无需冗余工作。每个现代深度学习框架都是基于此反向传播(backpropagation)的概念,因此每个框架都需要一个表示计算图的方式。
在许多流行的框架中,包括 TensorFlow、Theano 和 Keras 以及 Torch7 的 nngraph 库,计算图是一个提前构建的静态对象。该图是用像数学表达式的代码定义的,但其变量实际上是尚未保存任何数值的占位符(placeholder)。图中的占位符变量被编译进函数,然后可以在训练集的批处理上重复运行该函数来产生输出和梯度值。
这种静态计算图(static computation graph)方法对于固定结构的卷积神经网络效果很好。但是在许多其它应用中,有用的做法是令神经网络的图结构根据数据而有所不同。在自然语言处理中,研究人员通常希望通过每个时间步骤中输入的单词来展开(确定)循环神经网络。上述 SPINN 模型中的堆栈操作很大程度上依赖于控制流程(如 for 和 if 语句)来定义特定句子的计算图结构。在更复杂的情况下,你可能需要构建结构依赖于模型自身的子网络输出的模型。
这些想法中的一些(虽然不是全部)可以被生搬硬套到静态图系统中,但几乎总是以降低透明度和增加代码的困惑度为代价。该框架必须在其计算图中添加特殊的节点,这些节点代表如循环和条件的编程原语(programming primitive),而用户必须学习和使用这些节点,而不仅仅是编程代码语言中的 for 和 if 语句。这是因为程序员使用的任何控制流程语句将仅运行一次,当构建图时程序员需要硬编码(hard coding)单个计算路径。
例如,通过词向量(从初始状态 h0 开始)运行循环神经网络单元(rnn_unit)需要 TensorFlow 中的特殊控制流节点 tf.while_loop。需要一个额外的特殊节点来获取运行时的词长度,因为在运行代码时它只是一个占位符。
# TensorFlow
# (this code runs once, ring model initialization)
# “words” is not a real list (it’s a placeholder variable) so
# I can’t use “len”
cond = lambda i, h: i < tf.shape(words)[0]
cell = lambda i, h: rnn_unit(words[i], h)
i = 0
_, h = tf.while_loop(cond, cell, (i, h0))
基于动态计算图(dynamic computation graph)的方法与之前的方法有根本性不同,它有几十年的学术研究历史,其中包括了哈佛的 Kayak、自动微分库(autograd)以及以研究为中心的框架 Chainer和 DyNet。在这样的框架(也称为运行时定义(define-by-run))中,计算图在运行时被建立和重建,使用相同的代码为前向通过(forward pass)执行计算,同时也为反向传播(backpropagation)建立所需的数据结构。这种方法能产生更直接的代码,因为控制流程的编写可以使用标准的 for 和 if。它还使调试更容易,因为运行时断点(run-time breakpoint)或堆栈跟踪(stack trace)将追踪到实际编写的代码,而不是执行引擎中的编译函数。可以在动态框架中使用简单的 Python 的 for 循环来实现有相同变量长度的循环神经网络。
# PyTorch (also works in Chainer)
# (this code runs on every forward pass of the model)
# “words” is a Python list with actual values in it
h = h0
for word in words:
h = rnn_unit(word, h)
PyTorch 是第一个 define-by-run 的深度学习框架,它与静态图框架(如 TensorFlow)的功能和性能相匹配,使其能很好地适合从标准卷积神经网络(convolutional network)到最疯狂的强化学习(reinforcement learning)等思想。所以让我们来看看 SPINN 的实现。
代码
在开始构建网络之前,我需要设置一个数据加载器(data loader)。通过深度学习,模型可以通过数据样本的批处理进行操作,通过并行化(parallelism)加快训练,并在每一步都有一个更平滑的梯度变化。我想在这里可以做到这一点(稍后我将解释上述堆栈操作过程如何进行批处理)。以下 Python 代码使用内置于 PyTorch 的文本库的系统来加载数据,它可以通过连接相似长度的数据样本自动生成批处理。运行此代码之后,train_iter、dev_iter 和 test_itercontain 循环遍历训练集、验证集和测试集分块 SNLI 的批处理。
from torchtext import data, datasets
TEXT = datasets.snli.ParsedTextField(lower=True)
TRANSITIONS = datasets.snli.ShiftReceField()
LABELS = data.Field(sequential=False)train, dev, test = datasets.SNLI.splits(
TEXT, TRANSITIONS, LABELS, wv_type='glove.42B')TEXT.build_vocab(train, dev, test)
train_iter, dev_iter, test_iter = data.BucketIterator.splits(
(train, dev, test), batch_size=64)
你可以在 train.py中找到设置训练循环和准确性(accuracy)测量的其余代码。让我们继续。如上所述,SPINN 编码器包含参数化的 Rece 层和可选的循环跟踪器来跟踪句子上下文,以便在每次网络读取单词或应用 Rece 时更新隐藏状态;以下代码代表的是,创建一个 SPINN 只是意味着创建这两个子模块(我们将很快看到它们的代码),并将它们放在一个容器中以供稍后使用。
import torchfrom torch import nn
# subclass the Mole class from PyTorch’s neural network package
class SPINN(nn.Mole):
def __init__(self, config):
super(SPINN, self).__init__()
self.config = config self.rece = Rece(config.d_hidden, config.d_tracker)
if config.d_tracker is not None:
self.tracker = Tracker(config.d_hidden, config.d_tracker)
当创建模型时,SPINN.__init__ 被调用了一次;它分配和初始化参数,但不执行任何神经网络操作或构建任何类型的计算图。在每个新的批处理数据上运行的代码由 SPINN.forward 方法定义,它是用户实现的方法中用于定义模型向前过程的标准 PyTorch 名称。上面描述的是堆栈操作算法的一个有效实现,即在一般 Python 中,在一批缓冲区和堆栈上运行,每一个例子都对应一个缓冲区和堆栈。我使用转移矩阵(transition)包含的“shift”和“rece”操作集合进行迭代,运行 Tracker(如果存在),并遍历批处理中的每个样本来应用“shift”操作(如果请求),或将其添加到需要“rece”操作的样本列表中。然后在该列表中的所有样本上运行 Rece 层,并将结果推送回到它们各自的堆栈。
def forward(self, buffers, transitions):
# The input comes in as a single tensor of word embeddings;
# I need it to be a list of stacks, one for each example in
# the batch, that we can pop from independently. The words in
# each example have already been reversed, so that they can
# be read from left to right by popping from the end of each
# list; they have also been prefixed with a null value.
buffers = [list(torch.split(b.squeeze(1), 1, 0))
for b in torch.split(buffers, 1, 1)]
# we also need two null values at the bottom of each stack,
# so we can from the nulls in the input; these nulls
# are all needed so that the tracker can run even if the
# buffer or stack is empty
stacks = [[buf[0], buf[0]] for buf in buffers]
if hasattr(self, 'tracker'):
self.tracker.reset_state()
for trans_batch in transitions:
if hasattr(self, 'tracker'):
# I described the Tracker earlier as taking 4
# arguments (context_t, b, s1, s2), but here I
# provide the stack contents as a single argument
# while storing the context inside the Tracker
# object itself.
tracker_states, _ = self.tracker(buffers, stacks)
else:
tracker_states = itertools.repeat(None)
lefts, rights, trackings = [], [], []
batch = zip(trans_batch, buffers, stacks, tracker_states)
for transition, buf, stack, tracking in batch:
if transition == SHIFT:
stack.append(buf.pop())
elif transition == REDUCE:
rights.append(stack.pop())
lefts.append(stack.pop())
trackings.append(tracking)
if rights:
reced = iter(self.rece(lefts, rights, trackings))
for transition, stack in zip(trans_batch, stacks):
if transition == REDUCE:
stack.append(next(reced))
return [stack.pop() for stack in stacks]
在调用 self.tracker 或 self.rece 时分别运行 Tracker 或 Rece 子模块的向前方法,该方法需要在样本列表上应用前向操作。在主函数的向前方法中,在不同的样本上进行独立的操作是有意义的,即为批处理中每个样本提供分离的缓冲区和堆栈,因为所有受益于批处理执行的重度使用数学和需要 GPU 加速的操作都在 Tracker 和 Rece 中进行。为了更干净地编写这些函数,我将使用一些 helper(稍后将定义)将这些样本列表转化成批处理张量(tensor),反之亦然。
我希望 Rece 模块自动批处理其参数以加速计算,然后解批处理(unbatch)它们,以便可以单独推送和弹出。用于将每对左、右子短语表达组合成父短语(parent phrase)的实际组合函数是 TreeLSTM,它是普通循环神经网络单元 LSTM 的变型。该组合函数要求每个子短语的状态实际上由两个张量组成,一个隐藏状态 h 和一个存储单元(memory cell)状态 c,而函数是使用在子短语的隐藏状态操作的两个线性层(nn.Linear)和将线性层的结果与子短语的存储单元状态相结合的非线性组合函数 tree_lstm。在 SPINN 中,这种方式通过添加在 Tracker 的隐藏状态下运行的第 3 个线性层进行扩展。
图 2:TreeLSTM 组合函数增加了第 3 个输入(x,在这种情况下为 Tracker 状态)。在下面所示的 PyTorch 实现中,5 组的三种线性变换(由蓝色、黑色和红色箭头的三元组表示)组合为三个 nn.Linear 模块,而 tree_lstm 函数执行位于框内的所有计算。图来自 Chen et al. (2016)。
❺ python3.6程序运行出错,下面是提示 Traceback (most recent call last):
楼上说的不对,出的错与单引号无关,是编码的问题。你的代码本身没错,把你现在的文件删掉,重新建一个就行。下面和你的一样,只是换了路径,测试可行
1234567891011121314src_path = 'E:\\test_0.txt'des_path = 'E:\\test_1.txt' file_wait_to_read = open(src_path, 'r')file_wait_to_write = open(des_path, 'w') <a href="https://www..com/s?wd=sat&tn=44039180_cpr&fenlei=_5y9YIZ0lQzqlpA-" target="_blank" class="-highlight">sat</a> = raw_input('Please input the selected <a href="https://www..com/s?wd=sat&tn=44039180_cpr&fenlei=_5y9YIZ0lQzqlpA-" target="_blank" class="-highlight">sat</a>ellite: ')for line in file_wait_to_read.readlines(): if line.startswith(<a href="https://www..com/s?wd=sat&tn=44039180_cpr&fenlei=_5y9YIZ0lQzqlpA-" target="_blank" class="-highlight">sat</a>): file_wait_to_write.write(line) file_wait_to_write.flush()file_wait_to_read.close()file_wait_to_write.close()
❻ 为什么一用innerproct,python中就会出现check failure stack trace
解决方法如下:
typedef struct lista{
struct lista *next;
int data;
}list;
void insert(list *h);
void del(list *h);
int main()
{
int flag;
list *head=(list *)malloc(sizeof(list));
head->next=NULL;
while(1)
{
❼ 棋盘摆米用Python怎么做
摘要 棋盘摆米用Python:
❽ 假设有个列表存储了奇数个数字,请问如何用python编写程序,输出中间位置的数字
假设那个list叫a
那就直接:
result = a[int(len(a)/2)]
print(result)
例如:
>>> [0,1,2,3,4,5][1::2]
[1, 3, 5]
>>> from itertools import accumulate
>>> list(accumulate([1,1,1]))
[1, 2, 3]
>>> list(accumulate([1,-1,3]))
[1, 0, 3]
>>> list(map(int,str(123)))
[1, 2, 3]
(8)pythonhstack函数扩展阅读:
堆栈存储器指定两个寄存器来寻址:堆栈指针ESP和堆栈段寄存器SS,使用堆栈段之前首先要定义,程序中对堆栈段的定义语句为:STACK 200H;就是对堆栈的定义,即在内存中划分200H~SS:000001FFH,那么堆栈指针ESP的初值为00000200H。
当字数据AX压入堆栈时,高8位放入由ESP-1寻址的单元,低8位放入由ESP-2寻址的单元,然后ESP中的值减2。当字数据从堆栈弹出到BX时,低8位从ESP寻址的单元移出,高8位从ESP+1寻址的单元移出,然后ESP寄存器加2。
❾ python二叉树算法
定义一颗二叉树,请看官自行想象其形状
class BinNode( ):
def __init__( self, val ):
self.lchild = None
self.rchild = None
self.value = val
binNode1 = BinNode( 1 )
binNode2 = BinNode( 2 )
binNode3 = BinNode( 3 )
binNode4 = BinNode( 4 )
binNode5 = BinNode( 5 )
binNode6 = BinNode( 6 )
binNode1.lchild = binNode2
binNode1.rchild = binNode3
binNode2.lchild = binNode4
binNode2.rchild = binNode5
binNode3.lchild = binNode6
❿ Python基础 numpy中的常见函数有哪些
有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。
数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a
数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合
数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组
数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组
数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型
数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和
以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。