① 向大神求教!python写的决策树的ID3算法怎么一直提示bestfeat=labels[bestfeat_index]超出索引啊!
1、对当前训练集,计算各属性的信息增益(假设有属性A1,A2,…An);
2、选择信息增益最大的属性Ak(1<=k<=n),作为根节点;
3、把在Ak处取值相同的例子归于同一子集,作为该节点的一个树枝,Ak取几个值就得几个子集;
4、若在某个子集中的所有样本都是属于同一个类型(本位只讨论正(Y)、反(N)两种类型的情况),则给该分支标上类型号作为叶子节点;
5、对于同时含有多种(两种)类型的子集,则递归调用该算法思路来完成树的构造。
② 关于python编程决策树的问题,有没有大神来解答。。。
有一本《集体智慧编程》的书,里面有详细的讲解,而且有python的示例代码。
建议你看看。
③ sklearn 中做一个决策树,有个predict的方法总是调用失败,代码如下,倒数第二行报错,请问什么原因呀
改成predictedY = clf.predict(newRowX.reshape(1,-1))就可以了
④ 决策树之ID3算法及其Python实现
决策树之ID3算法及其Python实现
1. 决策树背景知识
??决策树是数据挖掘中最重要且最常用的方法之一,主要应用于数据挖掘中的分类和预测。决策树是知识的一种呈现方式,决策树中从顶点到每个结点的路径都是一条分类规则。决策树算法最先基于信息论发展起来,经过几十年发展,目前常用的算法有:ID3、C4.5、CART算法等。
2. 决策树一般构建过程
??构建决策树是一个自顶向下的过程。树的生长过程是一个不断把数据进行切分细分的过程,每一次切分都会产生一个数据子集对应的节点。从包含所有数据的根节点开始,根据选取分裂属性的属性值把训练集划分成不同的数据子集,生成由每个训练数据子集对应新的非叶子节点。对生成的非叶子节点再重复以上过程,直到满足特定的终止条件,停止对数据子集划分,生成数据子集对应的叶子节点,即所需类别。测试集在决策树构建完成后检验其性能。如果性能不达标,我们需要对决策树算法进行改善,直到达到预期的性能指标。
??注:分裂属性的选取是决策树生产过程中的关键,它决定了生成的决策树的性能、结构。分裂属性选择的评判标准是决策树算法之间的根本区别。
3. ID3算法分裂属性的选择——信息增益
??属性的选择是决策树算法中的核心。是对决策树的结构、性能起到决定性的作用。ID3算法基于信息增益的分裂属性选择。基于信息增益的属性选择是指以信息熵的下降速度作为选择属性的方法。它以的信息论为基础,选择具有最高信息增益的属性作为当前节点的分裂属性。选择该属性作为分裂属性后,使得分裂后的样本的信息量最大,不确定性最小,即熵最小。
??信息增益的定义为变化前后熵的差值,而熵的定义为信息的期望值,因此在了解熵和信息增益之前,我们需要了解信息的定义。
??信息:分类标签xi 在样本集 S 中出现的频率记为 p(xi),则 xi 的信息定义为:?log2p(xi) 。
??分裂之前样本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 为分类标签的个数。
??通过属性A分裂之后样本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始样本集通过属性A的属性值划分为 m 个子样本集,|Sj| 表示第j个子样本集中样本数量,|S| 表示分裂之前数据集中样本总数量。
??通过属性A分裂之后样本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??注:分裂属性的选择标准为:分裂前后信息增益越大越好,即分裂后的熵越小越好。
4. ID3算法
??ID3算法是一种基于信息增益属性选择的决策树学习方法。核心思想是:通过计算属性的信息增益来选择决策树各级节点上的分裂属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据进行分类。
ID3算法流程:
(1) 创建一个初始节点。如果该节点中的样本都在同一类别,则算法终止,把该节点标记为叶节点,并用该类别标记。
(2) 否则,依据算法选取信息增益最大的属性,该属性作为该节点的分裂属性。
(3) 对该分裂属性中的每一个值,延伸相应的一个分支,并依据属性值划分样本。
(4) 使用同样的过程,自顶向下的递归,直到满足下面三个条件中的一个时就停止递归。
??A、待分裂节点的所有样本同属于一类。
??B、训练样本集中所有样本均完成分类。
??C、所有属性均被作为分裂属性执行一次。若此时,叶子结点中仍有属于不同类别的样本时,选取叶子结点中包含样本最多的类别,作为该叶子结点的分类。
ID3算法优缺点分析
优点:构建决策树的速度比较快,算法实现简单,生成的规则容易理解。
缺点:在属性选择时,倾向于选择那些拥有多个属性值的属性作为分裂属性,而这些属性不一定是最佳分裂属性;不能处理属性值连续的属性;无修剪过程,无法对决策树进行优化,生成的决策树可能存在过度拟合的情况。
⑤ 决策树 python 代码实现后 怎么应用到实际中去
(1)#按照市值从小到大的顺序活得N支股票的代码;(2)#分别对这一百只股票进行100支股票操作;(3)#获取从2016.05.01到2016.11.17的涨跌幅数据;(4)#选取记录大于40个的数据,去除次新股;(5)#将文件名名为“股票代码.csv”。
⑥ 基于python的决策树能进行多分类吗
决策树主文件 tree.py
[python] view plain
#coding:utf-8
frommathimportlog
importjson
fromplotimportcreatePlot
classDecisionTree():
def__init__(self,criterion="entropy"):
self.tree=None
self.criterion=criterion
def_is_continuous_value(self,a):
#判断一个值是否是连续型变量
iftype(a).__name__.lower().find('float')>-1or
type(a).__name__.lower().find('int')>-1:
returnTrue
else:
returnFalse
def_calc_entropy(self,dataset):
#计算数据集的香农熵
classes=dataset.ix[:,-1]
total=len(classes)
cls_count={}
forclsinclasses:
ifclsnotincls_count.keys():
cls_count[cls]=0
cls_count[cls]+=1
entropy=1.0
forkeyincls_count:
prob=float(cls_count[key])/total
entropy-=prob*log(prob,2)
returnentropy
def_calc_gini(self,dataset):
#计算数据集的Gini指数
classes=dataset.ix[:,-1]
total=len(classes)
cls_count={}
forclsinclasses:
ifclsnotincls_count.keys():
cls_count[cls]=0
cls_count[cls]+=1
gini=1.0
forkeyincls_count:
prob=float(cls_count[key])/total
gini-=prob**2
returngini
def_split_data_category(self,dataset,feature,value):
#对分类变量进行拆分
#将feature列的值为value的记录抽取出来,同时删除feature列
⑦ python中的sklearn中决策树使用的是哪一种算法
1首先需要安装Cython网载进行本安装pythonsetup.pyinstall
2载Sklearn包进行本安装(使用pip或easy_install总错cannotimportmurmurhash3_32终本安装功)
3安装用nosetests-vsklearn进行测试