A. 如何利用 python 实现 SVM 模型
我先直观地阐述我对SVM的理解,这其中不会涉及数学公式,然后给出Python代码。
SVM是一种二分类模型,处理的数据可以分为三类:
线性可分,通过硬间隔最大化,学习线性分类器
近似线性可分,通过软间隔最大化,学习线性分类器
线性不可分,通过核函数以及软间隔最大化,学习非线性分类器
线性分类器,在平面上对应直线;非线性分类器,在平面上对应曲线。
硬间隔对应于线性可分数据集,可以将所有样本正确分类,也正因为如此,受噪声样本影响很大,不推荐。
软间隔对应于通常情况下的数据集(近似线性可分或线性不可分),允许一些超平面附近的样本被错误分类,从而提升了泛化性能。
如下图:
B. 求简单的python运算代码
首先,你看,这里它重复提示你输入0或1(代表no 或 yes),所以得有一个while循环来接收输入是否继续的命令:
版本1:
#coding:utf8
whileTrue:
commd=raw_input('Wouldyouliketoplayagain?(0-no,1-yes):')
ifstr(commd).isdigit():
ifint(commd)==1:
print'yes'
elifint(commd)==0:
print'Thanksforusingthiscalculator.'
break
else:
print'input0or1!'
else:
print'inputanumber!'
C. 用python单元测试怎么测一段代码
单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。
比如对函数abs(),我们可以编写出以下几个测试用例:
输入正数,比如1、1.2、0.99,期待返回值与输入相同;
输入负数,比如-1、-1.2、-0.99,期待返回值与输入相反;
输入0,期待返回0;
输入非数值类型,比如None、[]、{},期待抛出TypeError。
把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。
如果单元测试通过,说明我们测试的这个函数能够正常工作。如果单元测试不通过,要么函数有bug,要么测试条件输入不正确,总之,需要修复使单元测试能够通过。
单元测试通过后有什么意义呢?如果我们对abs()函数代码做了修改,只需要再跑一遍单元测试,如果通过,说明我们的修改不会对abs()函数原有的行为造成影响,如果测试不通过,说明我们的修改与原有行为不一致,要么修改代码,要么修改测试。
这种以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该模块行为仍然是正确的。
我们来编写一个Dict类,这个类的行为和dict一致,但是可以通过属性来访问,用起来就像下面这样:
>>> d = Dict(a=1, b=2)
>>> d['a']
1
>>> d.a
1
mydict.py代码如下:
class Dict(dict):
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
为了编写单元测试,我们需要引入Python自带的unittest模块,编写mydict_test.py如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEquals(d.a, 1)
self.assertEquals(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEquals(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEquals(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase继承。
以test开头的方法就是测试方法,不以test开头的方法不被认为是测试方法,测试的时候不会被执行。
对每一类测试都需要编写一个test_xxx()方法。由于unittest.TestCase提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。最常用的断言就是assertEquals():
self.assertEquals(abs(-1), 1) # 断言函数返回的结果与1相等
另一种重要的断言就是期待抛出指定类型的Error,比如通过d['empty']访问不存在的key时,断言会抛出KeyError:
with self.assertRaises(KeyError):
value = d['empty']
而通过d.empty访问不存在的key时,我们期待抛出AttributeError:
with self.assertRaises(AttributeError):
value = d.empty
运行单元测试
一旦编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py的最后加上两行代码:
if __name__ == '__main__':
unittest.main()
这样就可以把mydict_test.py当做正常的python脚本运行:
$ python mydict_test.py
另一种更常见的方法是在命令行通过参数-m unittest直接运行单元测试:
$ python -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s
OK
这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。
setUp与tearDown
可以在单元测试中编写两个特殊的setUp()和tearDown()方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。
setUp()和tearDown()方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()方法中连接数据库,在tearDown()方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:
class TestDict(unittest.TestCase):
def setUp(self):
print 'setUp...'
def tearDown(self):
print 'tearDown...'
可以再次运行测试看看每个测试方法调用前后是否会打印出setUp...和tearDown...。
D. 怎样用python实现SVM分类器,用于情感分析的二分类
这句话应该不是说你feature太多了,而是说for循环中,使用了两个变量去unpack featuresets太多了。所以应该是你的数据结构有问题,featuresets可能不是适合两个变量来解包的数据结构,或者中文编码有问题。
E. 如何用Python语言用svm来识别手写数字,关键是0-9都可以识别,现在网上都是识别1和9的,求
那题主现在已经很好的掌握了二分类问题(比如区分1和9)了吧。
用的什么库做SVM呢?如果这个库支持多分类SVM的话就很容易改成识别0-9的。
F. python svm 怎么训练模型
支持向量机SVM(Support Vector Machine)是有监督的分类预测模型,本篇文章使用机器学习库scikit-learn中的手写数字数据集介绍使用Python对SVM模型进行训练并对手写数字进行识别的过程。
准备工作
手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作为分类结果。在机器学习sklearn库中已经包含了不同数字的8X8灰度值矩阵,因此我们首先导入sklearn库自带的datasets数据集。然后是交叉验证库,SVM分类算法库,绘制图表库等。
12345678910#导入自带数据集from sklearn import datasets#导入交叉验证库from sklearn import cross_validation#导入SVM分类算法库from sklearn import svm#导入图表库import matplotlib.pyplot as plt#生成预测结果准确率的混淆矩阵from sklearn import metrics读取并查看数字矩阵
从sklearn库自带的datasets数据集中读取数字的8X8矩阵信息并赋值给digits。
12#读取自带数据集并赋值给digitsdigits = datasets.load_digits()查看其中的数字9可以发现,手写的数字9以64个灰度值保存。从下面的8×8矩阵中很难看出这是数字9。
12#查看数据集中数字9的矩阵digits.data[9]以灰度值的方式输出手写数字9的图像,可以看出个大概轮廓。这就是经过切割并以灰度保存的手写数字9。它所对应的64个灰度值就是模型的训练集,而真实的数字9是目标分类。我们的模型所要做的就是在已知64个灰度值与每个数字对应关系的情况下,通过对模型进行训练来对新的手写数字对应的真实数字进行分类。
1234#绘制图表查看数据集中数字9的图像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()
从混淆矩阵中可以看到,大部分的数字SVM的分类和预测都是正确的,但也有个别的数字分类错误,例如真实的数字2,SVM模型有一次错误的分类为1,还有一次错误分类为7。
G. 请问python中如何把SVM分类输出转化为后验概率想试试SVM+sigmoid,求代码
因为要用libsvm自带的脚本grid.py和easy.py,需要去官网下载绘图工具gnuplot,解压到c盘.进入c:\libsvm\tools目录下,用文本编辑器(记事本,edit都可以)修改grid.py和easy.py两个文件,找到其中关于gnuplot路径的那项,根据实际路径进行修改,并保存
python与libsvm的连接(参考SVM学习笔记(2)LIBSVM在python下的使用)
1.打开IDLE(pythonGUI),输入>>>importsys>>>sys.version
2.如果你的python是32位,将出现如下字符:
(default,Apr102012,23:31:26)[MSCv.150032bit(Intel)]’
这个时候LIBSVM的python接口设置将非常简单。在libsvm-3.16文件夹下的windows文件夹中找到动态链接库libsvm.dll,将其添加到系统目录,如`C:\WINDOWS\system32\’,即可在python中使用libsvm
H. 新手求教一个简单的python代码!
k=0
whilek>=0:
if5**(3**k)%2==3:
print(k)
break
k+=1