导航:首页 > 编程语言 > java密码加密md5

java密码加密md5

发布时间:2025-06-20 00:50:00

java 怎样实现 64位的md5加密算法

直接引入“commons-codec-1.10.jar”这个java包,然后调用相应方法即可

比如我们可以写一个方法类,把常用的方法都写进去:

publicclassEncryptionUtil{
/**
*Base64encode
**/
(Stringdata){
returnBase64.encodeBase64String(data.getBytes());
}

/**
*Base64decode
*@
**/
(Stringdata){
returnnewString(Base64.decodeBase64(data.getBytes()),"utf-8");
}

/**
*md5
**/
publicstaticStringmd5Hex(Stringdata){
returnDigestUtils.md5Hex(data);
}

/**
*sha1
**/
publicstaticStringsha1Hex(Stringdata){
returnDigestUtils.sha1Hex(data);
}

/**
*sha256
**/
publicstaticStringsha256Hex(Stringdata){
returnDigestUtils.sha256Hex(data);
}

}


(PS:纯手打,望采纳)

② Java MD5和SHA256等常用加密算法

在Java项目开发中,数据安全是至关重要的。特别是在前后端接口交互时,为了保护信息的完整性和安全性,我们需要对接口签名、用户登录密码等进行加密处理。加密算法作为基础技术,在身份验证、单点登录、信息通信和支付交易等多个场景中扮演着关键角色。

MD5,全称信息摘要算法,是一种常见的128位(16字节)散列函数。它通过复杂的算法操作,将明文转化为无法还原的密文,确保信息传输的一致性。尽管MD5常用于密码的存储,但需注意,由于其本质上是摘要而非加密,生成的128位字符串是单向的,无法逆向获取原始信息。在找回密码时,我们只能通过对比用户输入的MD5值来验证,而无法获取原密码。

SHA系列,如SHA-1,尽管有碰撞的潜在风险,但其安全性相对较高,适用于对信息安全要求较高的场景。HMAC(Hash-based Message Authentication Code)是基于哈希函数的认证码,推荐使用SHA256、SHA384、SHA512以及它们的HMAC变种,如HMAC-SHA256等,以提供更高级别的加密和认证功能。

对于实际应用中的对称加密算法,如常见的加密盐,它可以增强密码的安全性,防止暴力破解。至于在线加密网站,选择适合项目的加密算法至关重要。在众多算法中,SHA256、SHA384和SHA512因其较高的安全性,以及HMAC-SHA变种的认证能力,被广泛认为是更推荐的选择。

③ java怎么把字符串进行md5加密

给你看源代码,我自己写的

public static String md5(String src){
try{
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] output = md.digest(src.getBytes());//加密处理
//将加密结果output利用Base64转换成字符串输出
String ret = Base64.encodeBase64String(output);

return ret;
}catch(Exception e){
throw new NoteException("密码加密失败",e);
}

}

public static void main(String[] args) {
System.out.println(md5("123456"));
}

④ java的md5的加密算法代码

import java.lang.reflect.*;

/*******************************************************************************
* keyBean 类实现了RSA Data Security, Inc.在提交给IETF 的RFC1321中的keyBean message-digest
* 算法。
******************************************************************************/
public class keyBean {
/*
* 下面这些S11-S44实际上是一个4*4的矩阵,在原始的C实现中是用#define 实现的, 这里把它们实现成为static
* final是表示了只读,切能在同一个进程空间内的多个 Instance间共享
*/
static final int S11 = 7;

static final int S12 = 12;

static final int S13 = 17;

static final int S14 = 22;

static final int S21 = 5;

static final int S22 = 9;

static final int S23 = 14;

static final int S24 = 20;

static final int S31 = 4;

static final int S32 = 11;

static final int S33 = 16;

static final int S34 = 23;

static final int S41 = 6;

static final int S42 = 10;

static final int S43 = 15;

static final int S44 = 21;

static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 };

/*
* 下面的三个成员是keyBean计算过程中用到的3个核心数据,在原始的C实现中 被定义到keyBean_CTX结构中
*/
private long[] state = new long[4]; // state (ABCD)

private long[] count = new long[2]; // number of bits, molo 2^64 (lsb

// first)

private byte[] buffer = new byte[64]; // input buffer

/*
* digestHexStr是keyBean的唯一一个公共成员,是最新一次计算结果的 16进制ASCII表示.
*/

public String digestHexStr;

/*
* digest,是最新一次计算结果的2进制内部表示,表示128bit的keyBean值.
*/
private byte[] digest = new byte[16];

/*
* getkeyBeanofStr是类keyBean最主要的公共方法,入口参数是你想要进行keyBean变换的字符串
* 返回的是变换完的结果,这个结果是从公共成员digestHexStr取得的.
*/
public String getkeyBeanofStr(String inbuf) {
keyBeanInit();
keyBeanUpdate(inbuf.getBytes(), inbuf.length());
keyBeanFinal();
digestHexStr = "";
for (int i = 0; i < 16; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}

// 这是keyBean这个类的标准构造函数,JavaBean要求有一个public的并且没有参数的构造函数
public keyBean() {
keyBeanInit();
return;
}

/* keyBeanInit是一个初始化函数,初始化核心变量,装入标准的幻数 */
private void keyBeanInit() {
count[0] = 0L;
count[1] = 0L;
// /* Load magic initialization constants.
state[0] = 0x67452301L;
state[1] = 0xefcdab89L;
state[2] = 0x98badcfeL;
state[3] = 0x10325476L;
return;
}

/*
* F, G, H ,I 是4个基本的keyBean函数,在原始的keyBean的C实现中,由于它们是
* 简单的位运算,可能出于效率的考虑把它们实现成了宏,在java中,我们把它们 实现成了private方法,名字保持了原来C中的。
*/
private long F(long x, long y, long z) {
return (x & y) | ((~x) & z);
}

private long G(long x, long y, long z) {
return (x & z) | (y & (~z));
}

private long H(long x, long y, long z) {
return x ^ y ^ z;
}

private long I(long x, long y, long z) {
return y ^ (x | (~z));
}

/*
* FF,GG,HH和II将调用F,G,H,I进行近一步变换 FF, GG, HH, and II transformations for
* rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent
* recomputation.
*/
private long FF(long a, long b, long c, long d, long x, long s, long ac) {
a += F(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long GG(long a, long b, long c, long d, long x, long s, long ac) {
a += G(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long HH(long a, long b, long c, long d, long x, long s, long ac) {
a += H(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long II(long a, long b, long c, long d, long x, long s, long ac) {
a += I(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

/*
* keyBeanUpdate是keyBean的主计算过程,inbuf是要变换的字节串,inputlen是长度,这个
* 函数由getkeyBeanofStr调用,调用之前需要调用keyBeaninit,因此把它设计成private的
*/
private void keyBeanUpdate(byte[] inbuf, int inputLen) {
int i, index, partLen;
byte[] block = new byte[64];
index = (int) (count[0] >>> 3) & 0x3F;
// /* Update number of bits */
if ((count[0] += (inputLen << 3)) < (inputLen << 3))
count[1]++;
count[1] += (inputLen >>> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (inputLen >= partLen) {
keyBeanMemcpy(buffer, inbuf, index, 0, partLen);
keyBeanTransform(buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
keyBeanMemcpy(block, inbuf, 0, i, 64);
keyBeanTransform(block);
}
index = 0;
} else
i = 0;
// /* Buffer remaining input */
keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);
}

/*
* keyBeanFinal整理和填写输出结果
*/
private void keyBeanFinal() {
byte[] bits = new byte[8];
int index, padLen;
// /* Save number of bits */
Encode(bits, count, 8);
// /* Pad out to 56 mod 64.
index = (int) (count[0] >>> 3) & 0x3f;
padLen = (index < 56) ? (56 - index) : (120 - index);
keyBeanUpdate(PADDING, padLen);
// /* Append length (before padding) */
keyBeanUpdate(bits, 8);
// /* Store state in digest */
Encode(digest, state, 16);
}

/*
* keyBeanMemcpy是一个内部使用的byte数组的块拷贝函数,从input的inpos开始把len长度的
* 字节拷贝到output的outpos位置开始
*/
private void keyBeanMemcpy(byte[] output, byte[] input, int outpos,
int inpos, int len) {
int i;
for (i = 0; i < len; i++)
output[outpos + i] = input[inpos + i];
}

/*
* keyBeanTransform是keyBean核心变换程序,有keyBeanUpdate调用,block是分块的原始字节
*/
private void keyBeanTransform(byte block[]) {
long a = state[0], b = state[1], c = state[2], d = state[3];
long[] x = new long[16];
Decode(x, block, 64);
/* Round 1 */
a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */
d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */
c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */
b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */
a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */
d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */
c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */
b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */
a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */
d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */
c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */
b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */
a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */
d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */
c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */
b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */
/* Round 2 */
a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */
d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */
c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */
b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */
a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */
d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */
c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */
b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */
a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */
d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */
c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */
b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */
a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */
d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */
c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */
b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */
/* Round 3 */
a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */
d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */
c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */
b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */
a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */
d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */
c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */
b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */
a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */
d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */
c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */
b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */
a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */
d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */
c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */
b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */
/* Round 4 */
a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */
d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */
c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */
b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */
a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */
d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */
c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */
b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */
a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */
d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */
c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */
b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */
a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */
d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */
c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */
b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}

/*
* Encode把long数组按顺序拆成byte数组,因为java的long类型是64bit的, 只拆低32bit,以适应原始C实现的用途
*/
private void Encode(byte[] output, long[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (byte) (input[i] & 0xffL);
output[j + 1] = (byte) ((input[i] >>> 8) & 0xffL);
output[j + 2] = (byte) ((input[i] >>> 16) & 0xffL);
output[j + 3] = (byte) ((input[i] >>> 24) & 0xffL);
}
}

/*
* Decode把byte数组按顺序合成成long数组,因为java的long类型是64bit的,
* 只合成低32bit,高32bit清零,以适应原始C实现的用途
*/
private void Decode(long[] output, byte[] input, int len) {
int i, j;

for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) << 8)
| (b2iu(input[j + 2]) << 16) | (b2iu(input[j + 3]) << 24);
return;
}

/*
* b2iu是我写的一个把byte按照不考虑正负号的原则的”升位”程序,因为java没有unsigned运算
*/
public static long b2iu(byte b) {
return b < 0 ? b & 0x7F + 128 : b;
}

/*
* byteHEX(),用来把一个byte类型的数转换成十六进制的ASCII表示,
* 因为java中的byte的toString无法实现这一点,我们又没有C语言中的 sprintf(outbuf,"%02X",ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F' };
char[] ob = new char[2];
ob[0] = Digit[(ib >>> 4) & 0X0F];
ob[1] = Digit[ib & 0X0F];
String s = new String(ob);
return s;
}

public static void main(String args[]) {

keyBean m = new keyBean();
if (Array.getLength(args) == 0) { // 如果没有参数,执行标准的Test Suite
System.out.println("keyBean Test suite:");
System.out.println("keyBean(\"):" + m.getkeyBeanofStr(""));
System.out.println("keyBean(\"a\"):" + m.getkeyBeanofStr("a"));
System.out.println("keyBean(\"abc\"):" + m.getkeyBeanofStr("abc"));
System.out.println("keyBean(\"message digest\"):"
+ m.getkeyBeanofStr("message digest"));
System.out.println("keyBean(\"abcdefghijklmnopqrstuvwxyz\"):"
+ m.getkeyBeanofStr("abcdefghijklmnopqrstuvwxyz"));
System.out
.println("keyBean(\"\"):"
+ m
.getkeyBeanofStr(""));
} else
System.out.println("keyBean(" + args[0] + ")="
+ m.getkeyBeanofStr(args[0]));

}
}

⑤ java怎么把字符串进行md5加密

在Java中,要将字符串进行MD5加密,可以使用Java提供的MessageDigest类。以下是一个简单的实现示例:

首先,定义一个方法md5,输入参数为需要加密的字符串src,返回值为加密后的字符串:

public static String md5(String src) {
try {
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] output = md.digest(src.getBytes()); // 加密处理
// 将加密结果output利用Base64转换成字符串输出
String ret = Base64.encodeBase64String(output);
return ret;
} catch (Exception e) {
throw new NoteException("密码加密失败", e);
}
}

这里使用了Base64库将加密结果转换为字符串,以便于查看和存储。Base64是常用的编码方式之一,可以将二进制数据转换为文本格式。

接下来,我们可以通过主函数main来测试这个方法:

public static void main(String[] args) {
System.out.println(md5("123456"));
}

运行这段代码,将会输出123456的MD5加密结果。这里需要确保你的项目中已经引入了Base64库,以便使用Base64.encodeBase64String方法。

此外,加密后的结果长度为32个字符,对应128位的MD5哈希值。如果直接使用十六进制表示,则长度为64个字符。

需要注意的是,MD5加密算法虽然简单,但存在被破解的风险,建议在实际项目中使用更安全的加密算法,如SHA-256等。

在实际应用中,你还可以对加密后的字符串进行哈希比较,以验证用户输入的密码是否正确。

总之,通过上述代码,我们可以轻松地将字符串转换为MD5加密后的结果,从而保护敏感信息的安全。

⑥ java现在md5加密不安全了吗

针对md5加密是否不安全的讨论,首先需要明确md5并非加密算法,而是一种摘要算法。它用于将任意长度的数据转换为固定长度的输出,常用于数据完整性校验。然而,md5的安全性在逐渐降低,原因在于其输出的哈希值容易被碰撞,即两个不同的输入可能产生相同的输出哈希值。

md5的不安全性体现在其哈希值的碰撞风险上。理论上,由于输入空间远远大于输出空间,理论上可以找到两个不同的输入产生相同的md5哈希值。虽然找到这种碰撞需要大量计算,但在互联网环境下,已有工具和算法能够实现这一目标,降低了md5的安全性。

例如,在身份验证和密码存储场景中,使用md5加密密码不再安全,因为攻击者可以通过哈希碰撞找到相同的哈希值,进而尝试破解密码。为了增强安全性,推荐使用更强大的哈希算法,如SHA-256。SHA-256具有更大的输出空间和更高的安全级别,使得哈希碰撞难度大幅增加。

此外,尽管存在其他摘要算法如SHA-1和SHA-3等,它们在安全性上优于md5。SHA-3提供了更好的安全性,其设计旨在抵抗已知的哈希碰撞攻击策略,因此在密码学应用中更为推荐。

总之,md5加密的不安全性体现在其较低的抵抗碰撞能力,使得它在现代应用中逐渐被更安全的哈希算法所替代。在需要数据安全性的地方,选择SHA-256或SHA-3等更强大的哈希算法更为合适。

⑦ Java中如何使用MD5算法对数据就行加密

在Java中,使用MD5算法对字符串进行加密的代码如下:

首先定义一个公共静态方法:public final static String MD5(String s) {

接着获取字符串的字节数组:byte[] btInput = s.getBytes();

然后创建MessageDigest实例:MessageDigest mdInst = MessageDigest.getInstance("MD5");

更新字节数组:mdInst.update(btInput);

执行摘要算法:byte[] md = mdInst.digest();

创建字符串缓冲区:StringBuffer sb = new StringBuffer();

遍历摘要结果:for (int i = 0; i < md.length; i++) {

将每个字节转换为16进制字符串,并添加到缓冲区中:int val = (md[i]) & 0xff; if (val < 16) sb.append("0"); sb.append(Integer.toHexString(val));

最后返回生成的MD5值:return sb.toString();

处理可能出现的异常:} catch (Exception e) { return null; } }

以上代码可以对任何给定的字符串进行MD5加密。值得注意的是,MD5算法虽然简单且效率高,但它存在安全性不足的问题,因此在实际应用中应谨慎使用。

在进行MD5加密时,还需注意以下几点:

1. 输入字符串的编码方式,应确保与加密过程中的编码一致。

2. MD5生成的哈希值长度为128位,通常表示为32位十六进制数。

3. MD5算法不是加密算法,而是一个哈希算法,不能用于解密。

4. 为了提高安全性,建议使用更高级别的哈希算法,如SHA-256或SHA-3。

5. 在实际项目中,可以将加密逻辑封装为一个工具类,方便复用。

6. 对于需要长期存储的加密数据,建议使用盐值(Salt)机制,以增加破解难度。

总之,使用MD5算法对数据进行加密时,需充分考虑其局限性和安全性,以确保数据的安全性。

阅读全文

与java密码加密md5相关的资料

热点内容
安卓手机怎么给苹果手机验孕 浏览:311
马自达高压缩比 浏览:780
可解压环保袋 浏览:492
linux中的grep命令 浏览:733
圣诞节手工解压玩具 浏览:403
空调压缩机坏了值得修 浏览:636
linux在桌面上创建两个文件夹 浏览:589
macosxphp 浏览:181
idea版本编译器 浏览:335
韩国语入门pdf 浏览:8
苹果手机13隐私应用加密 浏览:210
程序员加盟 浏览:222
如何在12123app上查询违章照片 浏览:30
编程语言与编译 浏览:530
idea源码怎么找 浏览:354
谷歌如何升级安卓12 浏览:620
网页版pdf下载 浏览:555
云服务器如何开通80端口 浏览:713
茂名数据加密品牌 浏览:796
武汉云服务器分销商 浏览:210