Ⅰ C语言 阻塞、非阻塞和多线程有什么关系
说到阻塞和非阻塞 的概念,就要了解同步和异步的概念吧
同步:多个线程可以同时访问同一个资源。比如对一个变量而言,线程们可以同时对他进行读写。
使用场景:多个线程同时访问一块数据,也叫共享区。对于多个线程同时访问一块数据的时候,必须使用同步,否则可能会出现不安全的情况。比如数据库中的脏读。但是,多个线程同时访问一块数据,有一种情况不需要同步技术,那就是原子操作,也就是说操作系统在底层保证了操作要么全部做完,要么不做。
异步:
使用场景:只有一个线程访问当前的数据。比如,观察者模式,没有共享区,主题发生变化,通知观察者更新,主题继续做自己的事情,不需要等待观察者更新完成后再工作。
同步分为阻塞IO和异步IO
异步可以分为阻塞IO和非阻塞的IO
异步阻塞IO 通过select和epoll实现
Ⅱ 既然消息组件可以实现异步非阻塞,那么为什么还要用netty呢
两种技术解决的问题不同。
netty解决的是不同协议的编程:http,tcp(尤其是这个)编程
消息组件解决【处理能力】小于【请求能力】,使用消息组件在两者之间建立一个缓冲
Ⅲ nodejs和非阻塞io 和异步的区别
阻塞I/O
程序执行程必要进行I/O操作读写文件、输入输、请求响应等等I/O操作费至少相于代码说传统编程模式举例要读文件整线程都暂停等待文件读完继续执行换言I/O操作阻塞代码执行极降低程序效率
面C#读文件例:
private string ReadTxtToStr(string filename)
{
//打文件,打期间其代码停止执行直完打继续执行代码
FileStream fs = File.Open(filename, FileMode.Open);
Console.WriteLine("我打文件阻塞");
StreamReader sr = new StreamReader(fs);
//读取文件读取期间其代码停止执行直完读取继续执行代码
string str=sr.ReadToEnd();
Console.WriteLine("我读取文件阻塞");
return str;
}
述代码两Console.WriteLine()虽执行却辜阻塞段间理论读取文件需要10秒我浪费10秒I/O等待(实际程序运行部间浪费I/O等待)码农眼文数字
Having asynchronous I/O is good, because I/O is more expensive than most code and we should be doing something better than just waiting for I/O.
非阻塞I/O
理解阻塞I/O非阻塞I/O理解非阻塞I/O程序执行程I/O操作阻塞程序执行I/O操作同继续执行其代码(益于Node事件循环机制)I/O设备效率远远低于CPU效率代种I/O模型(非阻塞I/O)程序带性能提高非观
面受用Node.js实现非阻塞I/O继续读文件看码:
var fs = require("fs");
fs.readFile("./testfile", "utf8", function(error, file) {
if (error) throw error;
console.log("我读完文件");
});
console.log("我阻塞");
复制面代码保存test.js并同目录新建名testfile文件用node命令运行test.js,看输:
我阻塞
我读完文件
显符合传统程序执行顺序注意Node.js非阻塞I/O
首先解释面程序熟悉javaScript请忽略
var fs = require("fs");
代码:引入Node.js内置File System文件系统模块fsrequire()相与JavaimportC++include
fs.readFile("./testfile", "utf8", function(error, file) {
if (error) throw error;
console.log("我读完文件");
});
代码:进行I/O操作给readFile绑定调函数function(error,file){},并读取testfile完执行调函数期间面代码继续执行受I/O阻塞
先看我阻塞看我读完文件缘故
Node.js事件轮询机制(event loop)
《Node入门》推荐我读Mixu篇关于事件轮询博文确值读我英语般着词典能勉强看略懂吧
Mixu说经典句:
Everything runs in parallel except your code!
(Node)除代码切都并行
理解句再Node事半功倍
-
Ⅳ 名词解释:同步、异步、阻塞和非阻塞
同步1.同时起步,协调一致。 2.物理学名词。两个或几个随时间变化的量,在变化过程中保持一定的相对关系. 异步则反之..
阻塞 1.水流、交通等因被某物堵塞而不能通过。 2.闭塞不通。 3.使堵塞不通。用于抽象事物。 非阻塞则反之
Ⅳ 怎样理解阻塞非阻塞与同步异步的区别
“阻塞”与"非阻塞"与"同步"与“异步"不能简单的从字面理解,提供一个从分布式系统角度的回答。
1.同步与异步
同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication)
所谓同步,就是在发出一个*调用*时,在没有得到结果之前,该*调用*就不返回。但是一旦调用返回,就得到返回值了。
换句话说,就是由*调用者*主动等待这个*调用*的结果。
而异步则是相反,*调用*在发出之后,这个调用就直接返回了,所以没有返回结果。换句话说,当一个异步过程调用发出后,调用者不会立刻得到结果。而是在*调用*发出后,*被调用者*通过状态、通知来通知调用者,或通过回调函数处理这个调用。
典型的异步编程模型比如Node.js
举个通俗的例子:
你打电话问书店老板有没有《分布式系统》这本书,如果是同步通信机制,书店老板会说,你稍等,”我查一下",然后开始查啊查,等查好了(可能是5秒,也可能是一天)告诉你结果(返回结果)。
而异步通信机制,书店老板直接告诉你我查一下啊,查好了打电话给你,然后直接挂电话了(不返回结果)。然后查好了,他会主动打电话给你。在这里老板通过“回电”这种方式来回调。
2. 阻塞与非阻塞
阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态.
阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。
非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。
还是上面的例子,
你打电话问书店老板有没有《分布式系统》这本书,你如果是阻塞式调用,你会一直把自己“挂起”,直到得到这本书有没有的结果,如果是非阻塞式调用,你不管老板有没有告诉你,你自己先一边去玩了, 当然你也要偶尔过几分钟check一下老板有没有返回结果。
在这里阻塞与非阻塞与是否同步异步无关。跟老板通过什么方式回答你结果无关。
Ⅵ 为什么说nodejs是异步非阻塞
阻塞I/O
程序执行过程中必然要进行很多I/O操作,读写文件、输入输出、请求响应等等。I/O操作时最费时的,至少相对于代码来说,在传统的编程模式中,举个例子,你要读一个文件,整个线程都暂停下来,等待文件读完后继续执行。换言之,I/O操作阻塞了代码的执行,极大地降低了程序的效率。
下面是是一个C#读文件的例子:
private string ReadTxtToStr(string filename)
{
//打开文件,打开期间其他代码停止执行,直到完成打开后继续执行代码。
FileStream fs = File.Open(filename, FileMode.Open);
Console.WriteLine("我被打开文件阻塞了。");
StreamReader sr = new StreamReader(fs);
//读取文件,读取期间其他代码停止执行,直到完成读取后继续执行代码。
string str=sr.ReadToEnd();
Console.WriteLine("我被读取文件阻塞了。");
return str;
}
在上述代码中,两个Console.WriteLine()虽然会被执行,但是却被无辜地阻塞一段时间。理论上,如果读取这个文件需要10秒,我们就浪费了10秒在I/O等待中(实际程序运行中有很大一部分时间是浪费在I/O等待上的),在码农眼里这可是天文数字。
Having asynchronous I/O is good, because I/O is more expensive than most code and we should be doing something better than just waiting for I/O.
非阻塞I/O
理解了阻塞I/O,非阻塞I/O就好理解。非阻塞I/O是程序执行过程中,I/O操作不会阻塞程序的执行,也就是在I/O操作的同时,继续执行其他代码(这得益于Node的事件循环机制)。在I/O设备效率还远远低于CPU效率的时代,这种I/O模型(非阻塞I/O)为程序带来的性能上的提高是非常可观的。
好,下面感受一下怎么用Node.js实现非阻塞I/O,继续读文件,看码:
var fs = require("fs");
fs.readFile("./testfile", "utf8", function(error, file) {
if (error) throw error;
console.log("我读完文件了!");
});
console.log("我不会被阻塞!");
复制上面代码保存为test.js,并在同一目录下新建一个名为testfile的文件,用node命令运行test.js,你将看到以下输出:
我不会被阻塞!
我读完文件了!
这显然不符合传统的程序执行顺序,注意,这就是Node.js的非阻塞I/O了。
首先解释下面程序,如果你熟悉JavaScript,请忽略。
var fs = require("fs");
以上代码:引入Node.js内置的File System文件系统模块fs。require()相当与Java的import,C++的include。
fs.readFile("./testfile", "utf8", function(error, file) {
if (error) throw error;
console.log("我读完文件了!");
});
以上代码:进行I/O操作,给readFile绑定一个回调函数function(error,file){},并在读取testfile完成后执行回调函数。期间,后面的代码继续执行,不受I/O阻塞。
这就是为什么先看到“我不会被阻塞!”而后看到“我读完文件了!”的缘故。
Node.js事件轮询机制(event loop)
《Node入门》推荐我们去读一下Mixu的一篇关于事件轮询的博文,的确值得一读,我英语一般,开着词典还能勉强看,略懂吧。
Mixu说的最经典的一句话:
Everything runs in parallel except your code!
(在Node中)除了代码,一切都是并行的!
理解这句话,再去学Node,也就事半功倍了!
Ⅶ java 异步编程
用异步输入输出流编写Socket进程通信程序
在Merlin中加入了用于实现异步输入输出机制的应用程序接口包:java.nio(新的输入输出包,定义了很多基本类型缓冲(Buffer)),java.nio.channels(通道及选择器等,用于异步输入输出),java.nio.charset(字符的编码解码)。通道(Channel)首先在选择器(Selector)中注册自己感兴趣的事件,当相应的事件发生时,选择器便通过选择键(SelectionKey)通知已注册的通道。然后通道将需要处理的信息,通过缓冲(Buffer)打包,编码/解码,完成输入输出控制。
通道介绍:
这里主要介绍ServerSocketChannel和 SocketChannel.它们都是可选择的(selectable)通道,分别可以工作在同步和异步两种方式下(注意,这里的可选择不是指可以选择两种工作方式,而是指可以有选择的注册自己感兴趣的事件)。可以用channel.configureBlocking(Boolean )来设置其工作方式。与以前版本的API相比较,ServerSocketChannel就相当于ServerSocket(ServerSocketChannel封装了ServerSocket),而SocketChannel就相当于Socket(SocketChannel封装了Socket)。当通道工作在同步方式时,编程方法与以前的基本相似,这里主要介绍异步工作方式。
所谓异步输入输出机制,是指在进行输入输出处理时,不必等到输入输出处理完毕才返回。所以异步的同义语是非阻塞(None Blocking)。在服务器端,ServerSocketChannel通过静态函数open()返回一个实例serverChl。然后该通道调用serverChl.socket().bind()绑定到服务器某端口,并调用register(Selector sel, SelectionKey.OP_ACCEPT)注册OP_ACCEPT事件到一个选择器中(ServerSocketChannel只可以注册OP_ACCEPT事件)。当有客户请求连接时,选择器就会通知该通道有客户连接请求,就可以进行相应的输入输出控制了;在客户端,clientChl实例注册自己感兴趣的事件后(可以是OP_CONNECT,OP_READ,OP_WRITE的组合),调用clientChl.connect(InetSocketAddress )连接服务器然后进行相应处理。注意,这里的连接是异步的,即会立即返回而继续执行后面的代码。
选择器和选择键介绍:
选择器(Selector)的作用是:将通道感兴趣的事件放入队列中,而不是马上提交给应用程序,等已注册的通道自己来请求处理这些事件。换句话说,就是选择器将会随时报告已经准备好了的通道,而且是按照先进先出的顺序。那么,选择器是通过什么来报告的呢?选择键(SelectionKey)。选择键的作用就是表明哪个通道已经做好了准备,准备干什么。你也许马上会想到,那一定是已注册的通道感兴趣的事件。不错,例如对于服务器端serverChl来说,可以调用key.isAcceptable()来通知serverChl有客户端连接请求。相应的函数还有:SelectionKey.isReadable(),SelectionKey.isWritable()。一般的,在一个循环中轮询感兴趣的事件(具体可参照下面的代码)。如果选择器中尚无通道已注册事件发生,调用Selector.select()将阻塞,直到有事件发生为止。另外,可以调用selectNow()或者select(long timeout)。前者立即返回,没有事件时返回0值;后者等待timeout时间后返回。一个选择器最多可以同时被63个通道一起注册使用。
应用实例:
下面是用异步输入输出机制实现的客户/服务器实例程序――程序清单1(限于篇幅,只给出了服务器端实现,读者可以参照着实现客户端代码):
程序类图
public class NBlockingServer {
int port = 8000;
int BUFFERSIZE = 1024;
Selector selector = null;
ServerSocketChannel serverChannel = null;
HashMap clientChannelMap = null;//用来存放每一个客户连接对应的套接字和通道
public NBlockingServer( int port ) {
this.clientChannelMap = new HashMap();
this.port = port;
}
public void initialize() throws IOException {
//初始化,分别实例化一个选择器,一个服务器端可选择通道
this.selector = Selector.open();
this.serverChannel = ServerSocketChannel.open();
this.serverChannel.configureBlocking(false);
InetAddress localhost = InetAddress.getLocalHost();
InetSocketAddress isa = new InetSocketAddress(localhost, this.port );
this.serverChannel.socket().bind(isa);//将该套接字绑定到服务器某一可用端口
}
//结束时释放资源
public void finalize() throws IOException {
this.serverChannel.close();
this.selector.close();
}
//将读入字节缓冲的信息解码
public String decode( ByteBuffer byteBuffer ) throws
CharacterCodingException {
Charset charset = Charset.forName( "ISO-8859-1" );
CharsetDecoder decoder = charset.newDecoder();
CharBuffer charBuffer = decoder.decode( byteBuffer );
String result = charBuffer.toString();
return result;
}
//监听端口,当通道准备好时进行相应操作
public void portListening() throws IOException, InterruptedException {
//服务器端通道注册OP_ACCEPT事件
SelectionKey acceptKey =this.serverChannel.register( this.selector,
SelectionKey.OP_ACCEPT );
//当有已注册的事件发生时,select()返回值将大于0
while (acceptKey.selector().select() > 0 ) {
System.out.println("event happened");
//取得所有已经准备好的所有选择键
Set readyKeys = this.selector.selectedKeys();
//使用迭代器对选择键进行轮询
Iterator i = readyKeys.iterator();
while (i
else if ( key.isReadable() ) {//如果是通道读准备好事件
System.out.println("Readable");
//取得选择键对应的通道和套接字
SelectableChannel nextReady =
(SelectableChannel) key.channel();
Socket socket = (Socket) key.attachment();
//处理该事件,处理方法已封装在类ClientChInstance中
this.readFromChannel( socket.getChannel(),
(ClientChInstance)
this.clientChannelMap.get( socket ) );
}
else if ( key.isWritable() ) {//如果是通道写准备好事件
System.out.println("writeable");
//取得套接字后处理,方法同上
Socket socket = (Socket) key.attachment();
SocketChannel channel = (SocketChannel)
socket.getChannel();
this.writeToChannel( channel,"This is from server!");
}
}
}
}
//对通道的写操作
public void writeToChannel( SocketChannel channel, String message )
throws IOException {
ByteBuffer buf = ByteBuffer.wrap( message.getBytes() );
int nbytes = channel.write( buf );
}
//对通道的读操作
public void readFromChannel( SocketChannel channel, ClientChInstance clientInstance )
throws IOException, InterruptedException {
ByteBuffer byteBuffer = ByteBuffer.allocate( BUFFERSIZE );
int nbytes = channel.read( byteBuffer );
byteBuffer.flip();
String result = this.decode( byteBuffer );
//当客户端发出”@exit”退出命令时,关闭其通道
if ( result.indexOf( "@exit" ) >= 0 ) {
channel.close();
}
else {
clientInstance.append( result.toString() );
//读入一行完毕,执行相应操作
if ( result.indexOf( "\n" ) >= 0 ){
System.out.println("client input"+result);
clientInstance.execute();
}
}
}
//该类封装了怎样对客户端的通道进行操作,具体实现可以通过重载execute()方法
public class ClientChInstance {
SocketChannel channel;
StringBuffer buffer=new StringBuffer();
public ClientChInstance( SocketChannel channel ) {
this.channel = channel;
}
public void execute() throws IOException {
String message = "This is response after reading from channel!";
writeToChannel( this.channel, message );
buffer = new StringBuffer();
}
//当一行没有结束时,将当前字窜置于缓冲尾
public void append( String values ) {
buffer.append( values );
}
}
//主程序
public static void main( String[] args ) {
NBlockingServer nbServer = new NBlockingServer(8000);
try {
nbServer.initialize();
} catch ( Exception e ) {
e.printStackTrace();
System.exit( -1 );
}
try {
nbServer.portListening();
}
catch ( Exception e ) {
e.printStackTrace();
}
}
}
程序清单1
小结:
从以上程序段可以看出,服务器端没有引入多余线程就完成了多客户的客户/服务器模式。该程序中使用了回调模式(CALLBACK)。需要注意的是,请不要将原来的输入输出包与新加入的输入输出包混用,因为出于一些原因的考虑,这两个包并不兼容。即使用通道时请使用缓冲完成输入输出控制。该程序在Windows2000,J2SE1.4下,用telnet测试成功。
Ⅷ 网络编程中阻塞和非阻塞socket的区别
阻塞:一般的I/O操作可以在新建的流中运用.在服务器回应前它等待客户端发送一个空白的行.当会话结束时,服务器关闭流和客户端socket.如果在队列中没有请示将会出现什么情况呢?那个方法将会等待一个的到来.这个行为叫阻塞.accept()方法将会阻塞服务器线程直到一个呼叫到来.当5个连接处理完闭之后,服务器退出.任何的在队列中的呼叫将会被取消.
非阻塞:非阻塞套接字是指执行此套接字的网络调用时,不管是否执行成功,都立即返回。比如调用recv()函数读取网络缓冲区中数据,不管是否读到数据都立即返回,而不会一直挂在此函数调用上。在实际Windows网络通信软件开发中,异步非阻塞套接字是用的最多的。平常所说的C/S(客户端/服务器)结构的软件就是异步非阻塞模式的