‘壹’ python numpy 使用 loadtxt读取txt文件的内容,txt文件跟要执行的py文件在
很多时候,我们将数据存在txt或者csv格式的文件里,最后再用Python读取出来,存到数组或者列表里,再做相应计算。本文首先介绍写入txt的方法,再根据不同的需求(存为数组还是list),介绍从txt读取浮点数的方法。
一、写入浮点数到txt文件:
假设每次有两个浮点数需要写入txt文件,这里提供用with关键字打开文件的方法,使用with打开文件是一个很好的习惯,因为with结束,它就会自动close file,不用手动再去flie.close()。
[python] view plain
with open('file_path/filename.txt','a') as file:
write_str = '%f %f\n'%(float_data1,float_data2)
file.write(write_str)
二、从txt文件提取浮点数到numpy数组或list列表
首先假设你有一个odom.txt 的文件,里面每一行的数据个数都相同,如截图所示:
1.如果你是想把这些数据读取出来,存为numpy数组,那么一句代码可以搞定:
[python] view plain
a = numpy.loadtxt('odom.txt')
存为numpy数组以后,a的尺寸可以用a.shape进行查看,这里应为:(14,2)也就是14行2列。如果你觉得这个形状不是你期待的,你可以用:
[python] view plain
b = numpy.reshape(a,(你想要的形状))
如
b = numpy.reshape(a,(-1,1,2))
那么b就是一个三维数组了(14,1,2)
2.如果只是想读出来,存到一个list里,那就用下面的常用python格式了:
[python] view plain
with open('odom.txt', 'r') as f:
data = f.readlines() #txt中所有字符串读入data
for line in data:
odom = line.split() #将单个数据分隔开存好
numbers_float = map(float, odom) #转化为浮点数
print numbers_float
‘贰’ python float多少位
浮点数是用机器上浮点数的本机双精度(64 bit)表示的。提供大约17位的精度和范围从-308到308的指数。和C语言里面的double类型相同。Python不支持32bit的单精度浮点数。如果程序需要精确控制区间和数字精度,可以考虑使用numpy扩展库。
Python 3.X对于浮点数默认的是提供17位数字的精度。
关于单精度和双精度的通俗解释:
单精度型和双精度型,其类型说明符为float 单精度说明符,double 双精度说明符。在Turbo C中单精度型占4个字节(32位)内存空间,其数值范围为3.4E-38~3.4E+38,只能提供七位有效数字。双精度型占8 个字节(64位)内存空间,其数值范围为1.7E-308~1.7E+308,可提供16位有效数字。
‘叁’ 请问python怎样循环取指定范围的随机浮点数
使用 numpy 的random模块rand()方法可以生成[0,1)之间的随机数
importnumpyasnp
printnp.random.rand()
‘肆’ 为什么python的numpy的只能生成0到1范围的浮点数
我有个本办法,先生成n个随机数(都是0到1范围内的),再生成n个整数(用choise方法[50~100]内的整数),然后两组数对点相加
。。。我刚刚在想,如果是0.0000001~10亿之间。。。额。。。。咝~~好难
‘伍’ python numpy是什么库
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。
‘陆’ Python-与常规Python列表相比,NumPy有什么优势
NumPy的数组比Python列表更紧凑-您在Python中描述的列表列表至少需要20 MB左右,而单元格中具有单精度浮点数的NumPy 3D数组则需要4 MB。使用NumPy可以更快地读取和写入项目。
也许只关心一百万个单元就不会那么在意,但是肯定会关心十亿个单元-两种方法都不适合32位体系结构,但是使用64位版本,NumPy可以节省约4 GB ,仅Python一个就需要至少约12 GB(很多指针的大小加倍),这是一个昂贵得多的硬件!
差异主要是由于“间接性”造成的-Python列表是指向Python对象的指针的数组,每个指针至少4个字节,对于最小的Python对象也至少包含16个字节(类型指针为4,引用计数为4,类型为4值-内存分配器向上舍入为16)。NumPy数组是统一值的数组-单精度数字每个占用4个字节,双精度数字每个占用8个字节。灵活性较差。
‘柒’ 如何用Python定义一个32位单精度浮点型数据数组 大小为num
int a; //基本整型
long int b; //长整型
char c; // 字符型
float d; // 单精度浮点型
double e; //双精度浮点型
char s[20]; // 字符型数组 或 字符串 型
‘捌’ python numpy生成的矩阵 小数点问题
那就说明肯定是浮点型的,看看你怎么生成的,哪怕是一堆int中有一个float也会全变成float,因为要保证所有数据格式相同。你可以在生成这个矩阵的时候加dtype参数dtype=np.int,应该可以解决。
‘玖’ python中怎么读浮点格式图片
方法/步骤
打开shell界面,也是大家常说的idle。
‘拾’ python float函数字符串转换浮点数 保留位数
python中,float函数属于内置函数,其实在底层是调用了C的库。
C库中有直接送字符串转float的函数。就是atof函数。
atof具体的实现比较复杂,可以搜索 “atof 源码” 自己学习。
字符串转int也是同理,调用C库中的atoi函数。首先学习一下C和计算机组成原理。懂得这些在内存中实际是怎么存储的。然后学习一下编译原理,从而了解高级语言的解释。
(10)pythonnumpy浮点数扩展阅读:
由于Python语言的简洁性、易读性以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python来教授程序设计课程。例如卡耐基梅隆大学的编程基础、麻省理工学院的计算机科学及编程导论就使用Python语言讲授。
众多开源的科学计算软件包都提供了Python的调用接口,例如着名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的科学计算扩展库:
NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。
2018年3月,该语言作者在邮件列表上宣布Python 2.7将于2020年1月1日终止支持。用户如果想要在这个日期之后继续得到与Python 2.7有关的支持,则需要付费给商业供应商。