导航:首页 > 操作系统 > sht11温湿度传感器程序普中单片机

sht11温湿度传感器程序普中单片机

发布时间:2022-06-22 07:23:39

‘壹’ 100分,求温湿度传感器SHT11的源程序(51单片机语言)

#include <reg52.h>
#define uchar unsigned char
#define uint unsigned int
//数码管位定义
sbit la = P2^6;
sbit wela = P2^7;
#define OK 1
#define ERROR 0
#define NUMBER 20
#define SIZE 5
sbit dht11 = P2^0;
uchar status;
//存放五字节数据的数组
uchar value_array[SIZE];
/*可在其他的文件引用温湿度值,实际是温度的整数的10 倍
如dht11 读回的温度是26,则temp_value = 260, 湿度同理*/
uchar flag;
//数码管编码
uchar code array[]= {
0x3f,0x06,0x5b,0x4f,0x66,
0x6d,0x7d,0x07,0x7f,0x6f
};
int temp_value, humi_value;
void InitTime(void);
//void Delay_1ms(uint ms);
void SMG_Display(uint value);
void Delay_1ms(uint ms)
{
uint x, y;
for(x = ms; x > 0; x--)
{
for(y = 124; y > 0; y--);
}
}
void Delay_10us(void)
{
unsigned char i;
i--;
i--;
i--;
i--;
i--;
i--;
}
/*读一个字节的数据*/
uchar ReadValue(void)
{
uchar count, value = 0, i;
status = OK; //设定标志为正常状态
for(i = 8; i > 0; i--)
{
//高位在先
value <<= 1;
count = 0;
//每一位数据前会有一个50us 的低电平时间.等待50us 低电平结束
while(dht11 == 0 && count++ < NUMBER);
if(count >= NUMBER)
{
status = ERROR; //设定错误标志
return 0; //函数执行过程发生错误就退出函数
}
//26-28us 的高电平表示该位是0,为70us 高电平表该位1
Delay_10us();
Delay_10us();
Delay_10us();
//延时30us 后检测数据线是否还是高电平
if(dht11 != 0)
{
//进入这里表示该位是1
value++;
//等待剩余(约40us)的高电平结束
while(dht11 != 0 && count++ < NUMBER)
{
dht11 = 1;
}
if(count >= NUMBER)
{
status = ERROR; //设定错误标志
return 0;
}
}
}
return (value);
}
//读一次的数据,共五字节
uchar ReadTempAndHumi(void)
{
uchar i = 0, check_value = 0,count = 0;
EA = 0;
dht11 = 0; //拉低数据线大于18ms 发送开始信号
Delay_1ms(20); //需大于18 毫秒
dht11 = 1; //释放数据线,用于检测低电平的应答信号
//延时20-40us,等待一段时间后检测应答信号,应答信号是从机拉低数据线80us
Delay_10us();
Delay_10us();
Delay_10us();
Delay_10us();
if(dht11 != 0) //检测应答信号,应答信号是低电平
{
//没应答信号
EA = 1;
return ERROR;
}
else
{
//有应答信号
while(dht11 == 0 && count++ < NUMBER); //等待应答信号结束
if(count >= NUMBER) //检测计数器是否超过了设定的范围
{
dht11 = 1;
EA = 1;
return ERROR; //读数据出错,退出函数
}
count = 0;
dht11 = 1;//释放数据线
//应答信号后会有一个80us 的高电平,等待高电平结束
while(dht11 != 0 && count++ < NUMBER);
if(count >= NUMBER)
{
dht11 = 1;
EA = 1;
return ERROR; //退出函数
}
//读出湿.温度值
for(i = 0; i < SIZE; i++)
{
value_array[i] = ReadValue();
if(status == ERROR)//调用ReadValue()读数据出错会设定status 为ERROR
{
dht11 = 1;
EA = 1;
return ERROR;
}
//读出的最后一个值是校验值不需加上去
if(i != SIZE - 1)
{
//读出的五字节数据中的前四字节数据和等于第五字节数据表示成功
check_value += value_array[i];
}
}//end for
//在没用发生函数调用失败时进行校验
if(check_value == value_array[SIZE - 1])
{
//将温湿度扩大10 倍方便分离出每一位
humi_value = value_array[0] * 10;
temp_value = value_array[2] * 10;
dht11 = 1;
EA = 1;
return OK; //正确的读出dht11 输出的数据
}
else
{
//校验数据出错
EA = 1;
return ERROR;
}
}
}
void main(void)
{
uchar mark = 0;
//先等上电稳定
Delay_1ms(1000);
//因为读一次数据dht11 才会触发一次采集数据.
//即在先使用数据时采集一次数据
ReadTempAndHumi();
//因为在两次采集数据需一定的时间间隔,这里还可减少
Delay_1ms(3000);
//设定定时器
InitTime();
while(1)
{
//三秒读一次温湿度
if(flag == 60)
{
flag = 0;
mark++;
/*
//读温湿度,可检测函数调用是否失败,
//函数返回OK(1)表示成功,返回ERROR(0)表示失败
//OK和ERROR是在DHT11.H中定义的宏
*/
ReadTempAndHumi();
}
if(mark % 2 == 0)
{
//显示温度
SMG_Display(temp_value);
}
else
{
//显示湿度
SMG_Display(humi_value);
}
}
}
//设定定时器
void InitTime(void)
{
TH0 = (65535 - 50000)/256;
TL0 = (65535 - 50000)%256 ;
TMOD = 0X01;
TR0 = 1;
ET0 = 1;
EA = 1;
}
//数码管显示函数
void SMG_Display(uint value)
{
uchar ge, , shi;
ge = value % 10;
shi = value % 100 / 10;
= value % 1000 / 100;
wela=1;
P0 = 0XFE;
wela=0;
P0 = 0XFF;
la=1;;
P0 = array[];
la=0;
Delay_1ms(2);
wela=1;
P0 = 0XFD;
wela=0;
P0 = 0XFF;
la=1;
P0 = array[shi];
P0 |= 0x80; /*显示小数点*/
la=0;
Delay_1ms(2);
wela=1;
P0 = 0XFB;
wela=0;
P0 = 0XFF;
la=1;
P0 = array[ge];
la=0;
Delay_1ms(2);
}
//中断函数
void timer(void) interrupt 1
{
TH0 = (65535 - 50000)/256;
TL0 = (65535 - 50000)%256;
flag++;
}

‘贰’ 求老师大侠帮忙看看一个关于和51单片机相连的sht11温湿度传感器/读取一个字节/函数c语言

嗯,默认你已经对硬件及时序比较熟悉了,直接解释一下数据读取过程了

先看一下初值部分
unsigned char i,val=0;
....
for(i=0x80;i>0;i/=2)
....
先注意到val的初值为0,
i的初值为0x80(对应的二进制为 1000 0000)
每次循环之后有个'i/=2' 即i的值减半
1000 0000 0x80
0100 0000 0x40
0010 0000 0x20
....

再来看循环部分
{
SCK=1; //上升沿读入
if(DATA)
val=(val | i); //确定值
SCK=0;
}
对于该串行端口,控制器输出时钟SCK下降沿之后sht11更新数据总线DATA,所以高电平的时候读取数据是可靠的(具体你可以分析琢磨一下,一般的串行口是上升沿锁存输入指令,下降沿更新输出数据)

下面假设串行口将要输出的数据位0x58即依次输出 0101 1000,高位数据首先输出

第一次循环(此时val=0,i=0x80)
SCK=1;
上升沿之后判断数据总线的电平(这之前SCK应该一直是低电平的,具体看一下你的初始化部分)
对于0x58 二进制的最高位为0,此时DATA总线为0, “ if(DATA)”不满足
val保持不变
然后SCK=0,产生下降沿,sht11更新DATA数据(执行之后DATA输出次高位‘1’)

第二次循环(此时val=0,i=0x40)
SCK=1;
上升沿之后判断数据总线的电平
对于0x58 二进制的第二位为1,此时DATA总线为1, “ if(DATA)”满足,
val=(val | i);
执行后val=0x40,即将次高位数据更新
然后SCK=0,产生下降沿,更新DATA数据(执行之后DATA输出第3位数据)

第三次循环(此时val=0(0x40,i=0x20)
SCK=1;
上升沿之后判断数据总线的电平
对于0x58 二进制的第三位为0,此时DATA总线为0, “ if(DATA)”不满足,
val保持不变
然后SCK=0,产生下降沿,更新DATA数据(执行之后DATA输出第4位数据)

....
第8次循环(此时val=0(0x58,i=0x01)
SCK=1;
上升沿之后判断数据总线的电平
对于0x58 二进制的第8位为0,此时DATA总线为0, “ if(DATA)”不满足,
val保持不变
然后SCK=0,产生下降沿,更新DATA数据

这样就把完成的8个字节读出来了
然后
temp_h=val;
val=0;

把高8位的数据暂存一下,并把val清零,准备读取低8位数据

接下来的就和上面的读取过程很相像了,不再过多解释...

‘叁’ 我已经实现了单片机控制sht11温湿度传感器,那怎么样才可以实现自动升

纠正一个概念,传感器不是被控制的。而传感器给单片机提供信息的。要实现控制升温,你的单片机必需要对传感器送来的温度信号进行处理,并与预设参数比较并给出控制量,再通过控制器件对加热部件进行加热控制。
实用中一般是不做降温控制的(停止加热后自然降温)

‘肆’ 关于SHT11的编程

SHT11是瑞士Sensirion公司生产的具有I2C总线接口的单片全校准数字式相对湿度和温度传感器。该传感器采用独特的CMOSens TM技术,具有数字式输出、免调试、免标定、免外围电路及全互换的特点。文中对传感器的性能特点、接口时序与命令进行了详细的阐述,给出了SHT11与单片机的接口电路及相应程序。 关键词:数字式;温湿度传感器;I2C总线;单片机1 概述温湿度的测量在仓储管理、生产制造、气象观测、科学研究以及日常生活中被广泛应用,传统的模拟式湿度传感器一般都要设计信号调理电路并需要经过复杂的校准和标定过程,因此测量精度难以保证,且在线性度、重复性、互换性、一致性等方面往往不尽人意。SHT11是瑞士Sensirion公司推出的基于CMOSensTM技术的新型温湿度传感器。该传感器将CMOS芯片技术与传感器技术结合起来,从而发挥出它们强大的优势互补作用。
2 性能特点SHT11温湿度传感器的主要特性如下:●将温湿度传感器、信号放大调理、A/D转换、I2C总线接口全部集成于一芯片(CMOSensTM技术);●可给出全校准相对湿度及温度值输出;●带有工业标准的I2C总线数字输出接口;●具有露点值计算输出功能;●具有卓越的长期稳定性;●湿度值输出分辨率为14位,温度值输出分辨率为12位,并可编程为12位和8位;●小体积(7.65×5.08×23.5mm),可表面贴装;●具有可靠的CRC数据传输校验功能;●片内装载的校准系数可保证100%互换性;●电源电压范围为2.4~5.5V;●电流消耗,测量时为550μA,平均为28μA,休眠时为3μA。

SHT11温湿度传感器采用SMD(LCC)表面贴片封装形式,管脚排列如图1所示,其引脚说明如下:(1)GND:接地端;(2)DATA:双向串行数据线;(3)SCK:串行时钟输入;(4)VDD电源端:0.4~5.5V电源端;(5~8)NC:空管脚。
3 工作原理SHT11的湿度检测运用电容式结构,并采用具有不同保护的“微型结构”检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度较高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误差。CMOSensTM技术不仅将温湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C总线等电路全部集成在一个芯片内。SHT11传感器的内部结构框图如图2所示。SHT11的每一个传感器都是在极为精确的湿度室中校准的。SHT11传感器的校准系数预先存在OTP内存中。经校准的相对湿度和温度传感器与一个14位的A/D转换器相连,可将转换后的数字温湿度值送给二线I2C总线器件,从而将数字信号转换为符合I2C总线协议的串行数字信号。

由于将传感器与电路部分结合在一起,因此,该传感器具有比其它类型的湿度传感器优越得多的性能。首先是传感器信号强度的增加增强了传感器的抗干扰性能,保证了传感器的长期稳定性,而A/D转换的同时完成,则降低了传感器对干扰噪声的敏感程度。其次在传感器芯片内装载的校准数据保证了每一只湿度传感器都具有相同的功能,即具有100%的互换性。最后,传感器可直接通过I2C总线与任何类型的微处理器、微控制器系统连接,从而减少了接口电路的硬件成本,简化了接口方式。3.1 输出特性(1)湿度值输出SHT11可通过I2C总线直接输出数字量湿度值,其相对湿度数字输出特性曲线如图3所示。由图3可看出,SHT11的输出特性呈一定的非线性,为了补偿湿度传感器的非线性,可按如下公式修正湿度值:RHlinear=c1+c2SORH+c3SORH2式中,SORH为传感器相对湿度测量值,系数取值如下:12位:SORH:c1=-4,c2=0.0405,c3=-2.8×10-68位:SORH:c1=-4,c2=0.648,c3=-7.2×10-4(2)温度值输出由于SHT11温度传感器的线性非常好,故可用下列公式将温度数字输出转换成实际温度值:T=d1+d2SOT当电源电压为5V,且温度传感器的分辨率为14位时,d1=-40�d2=0.01,当温度传感器的分辨率为12位时,d1=-40�d2=0.04。(3)露点计算空气的露点值可根据相对湿度和温度值来得出,具体的计算公式如下:LogEW=(0.66077+7.5T/(237.3+T)+[log10(RH)-2]Dp=[(0.66077-logEW)×237.3]/(logEW-8.16077)3.2 命令与接口时序SHT11传感器共有5条用户命令,具体命令格式见表1所列。下面介绍一下具体的命令顺序及命令时序。

i2c总线数字式温湿度传感器sht11及其在单片机系统的应用 来自: 免费论文网
表1 SHT11传感器命令列表命 令编 码说 明测量温度00011温度测量测量湿度00101湿度测量读寄存器状态00111“读”状态寄存器写寄存器状态00110“写”状态寄存器软启动11110重启芯片,清除状态记录器的错误记录11毫秒后进入下一个命令(1)传输开始初始化传输时,应首先发出“传输开始”命令,该命令可在SCK为高时使DATA由高电平变为低电平,并在下一个SCK为高时将DATA升高。接下来的命令顺序包含三个地址位(目前只支持“000”)和5个命令位,当DATA脚的ack位处于低电位时,表示SHT11正确收到命令。(2)连接复位顺序如果与SHT11传感器的通讯中断,下列信号顺序会使串口复位:即当DATA线处于高电平时,触发SCK 9次以上(含9次),此后应接着发一个“传输开始”命令。
表2 SHT11状态寄存器类型及说明位类型说 明缺 省 7 保留0 6读工检限(低电压检查)X 5 保留0 4 保留0 3 只用于试验,不可以使用0 2读/写加热0关1读/写不从OTP重下载0重下载0读/写'1'=8位相对湿度,12位温度分辨率。'0'=12位相对湿度,14位湿度分辨率012位相对湿度,14位湿度(3)温湿度测量时序当发出了温(湿)度测量命令后,控制器就要等到测量完成。使用8/12/14位的分辨率测量分别需要大约11/55/210ms的时间。为表明测量完成,SHT11会使数据线为低,此时控制器必须重新启动SCK,然后传送两字节的测量数据与1字节CRC校验和。控制器必须通过使DATA为低来确认每一个字节,所有的量均从右算,MSB列于第一位。通讯在确认CRC数据位后停止。如果没有用CRC-8校验和,则控制器就会在测量数据LSB后保持ack为高来停止通讯,SHT11在测量和通讯完成后会自动返回睡眠模式。需要注意的是:为使SHT11的温升低于0.1℃�此时的工作频率不能大于标定值的15%(如:12位精确度时,每秒最多进行3次测量)。测量温度和湿度命令所对应的时序如图4所示。
论文I2C总线数字式温湿度传感器SHT11及其在单片机系统的应用来自

图4
3.3 寄存器配置SHT11传感器中的一些高级功能是通过状态寄存器来实现的,寄存器各位的类型及说明见表2所列。下面对寄存器相关位的功能说明:(1)加热使芯片中的加热开关接通后,传感器温度大约增加5℃,从而使功耗增加至8mA@5V。加热用途如下:●通过对启动加热器前后的温、湿度进行比较,可以正确地区别传感器的功能;●在相对湿度较高的环境下,传感器可通过加热来避免冷凝。(2)低电压检测SHT11工作时可以自行检测VDD电压是否低于2.45V,准确度为±0.1V。(3)下载校准系数为了节省能量并提高速度,OTP在每次测量前都要重新下载校准系数,从而使每一次测量节省8.2ms的时间。(4)测量分辨率设定将测量分辨率从14位(温度)和12位(湿度)分别减到12位和8位可应用于高速或低功耗场合。

4 应用说明4.1 运行条件测量量程以外的温度会使湿度信号暂时地偏移+3%。然后传感器会慢慢返回到校准条件。若将芯片在湿度小于5%环境下加热24小时到90℃,芯片就会迅速恢复高相对湿度、高温度环境的影响,但是,延长强度条件会加速芯片的老化。4.2 安装注意事项由于大气的相对湿度与温度的关系比较密切,因此,测量大气温度时的要点是将传感器与大气保持同一温度,如果传感器线路板上有发热元件,SHT11应与热源保持良好的通风,为减少SHT11和PCB之间的热传导,应使铜导线最细并在其中加上窄缝,同时应避免使传感器在强光或UV下曝晒。传感器在布线时,SCK和DATA信号平行且相互接近,或信号线长于10cm时,均会产生干扰信息,此时应在两组信号之间放置VDD或GND。
5 具体应用图5是AT89C2051单片机与SHT11的接口电路。由于AT89C2051不具备I2C总线接口,故使用单片机通用I/O口线来虚拟I2C总线,并利用P1.0来虚拟数据线DATA,利用P1.1口线来虚拟时钟线,并在DATA端接入一只4.7kΩ的上拉电阻,同时,在VDD及GND端接入一只0.1μF的去耦电容。下面给出与上述硬件电路配套的C51应用程序。#define DATA P1_1#define SCK P1_0#define ACK 1#define noACK 0#define MEASURE_TEMP 0x03 //测量温度命令#define MEASURE_HUMI 0x05 //测量湿度命令//读温湿度数据char s-measure(unsigned char *p- value, un-signed char *p_checksum, unsigned char mode){unsigned char error=0;unsigned int i;s_transstart(); //传输开始switch(mode){caseTEMP:error+=s_write_byte(measure_temp);break;caseHUMI:error+=s_write_byte(measure_humi);break;default:break;}for(i=0;i<65535;i++) if(DATA==0) break;if (DATA) reeor+=1;*(p_value)=s_read_byte(ACK);*(p_value+1)=s_read_byte(ACK);*p_checksum=s_read_byte(noACK);return error;}//温湿度值标度变换及温度补偿void calc_sth15(float *p_humidity,float *p_tempera-ture){const float c1=-4.0;const float c2=0.0405;const float c3=-0.0000028;const float t1=-0.01;const float t2=0.00008;float rh=×p_humidity;float t=×p_temperature;float rh_lin;float th_ture;float t_c;t_c=t×0.01-40;rh_lin=c3×rh×rh+c2×rh+c1;trh_ture=(t_c-25)×(t1+t2×rh)+rh_lin;×p_temperature=t-c;×p_humidity=rh_ture;}//从相对温度和湿度计算露点char calc_dewpoint(float h,float t){float logex,dew_point;logex=0.66077+7.5×t/(237.3+t)+[log10(h)-2];dew_point=(logex-0.66077)×237.3/(0.66077+7.5-logex);return dew_point;}限于篇幅,上述程序中未给出传输开始、写字节数据、读字节数据函数。

‘伍’ 谁能发张温湿度传感器sht11和单片机连接原理图,现成的也可以。谢谢

原理图很简单 就是把sht11的数据口和时钟口就到单片机的两个端口,关键是编程啊,下面一段是我之前写的一段关于sht11的程序,希望能帮到你,有问题交流下的
#include <reg52.h> //头文件
#include <intrins.h>
#include <stdio.h> //
#include <math.h> //Keil library

//**************************************

#define uchar unsigned char //定义一下方便使用
#define uint unsigned int //定义一下方便使用
#define ulong unsigned long //定义一下方便使用

#define TEMP_ML 0x03 //000 0001 1 温度命令
#define HUMI_ML 0x05 //000 0010 1 温度命令
unsigned char error ;//全局错误变量
unsigned char ack ;//全局应答变量
//float temp_zi ;//全局应答变量
//float humi_zi ;//全局应答变量
unsigned char temp_h ;//全局应答变量
unsigned char temp_LL ;//全局应答变量

unsigned int xian_t=0;//温度显值
unsigned int xian_h=0;//湿度显值

uchar set_h,set_l;
bit setbz_h,setbz_l,setkey;

sbit DATA =P2^6;//数据
sbit SCK=P2^7;//时钟
sbit hot =P2^0;// 加热
sbit motor =P2^1;// 电机
sbit speek =P2^2;// 声音
sbit set =P0^0;// 设置
sbit setup =P0^1;// 设置+
sbit setdown =P0^2;// 设置-

sbit gwei =P3^4;//个位
sbit swei =P3^3;//十位
sbit bwei =P3^2;//百位
sbit qwei =P3^1;//千位
unsigned char code dispcode[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//共阳

//*******************************基本驱动程

/////////////////
//////////////////////

char read() //读一个字节 返回应答信号
//----------------------------------------------------------------------------------
// reads a byte form the Sensibus and gives an acknowledge in case of "ack=1"
{
unsigned char i,val=0;
temp_LL=0;
temp_h=0;
DATA=1; //释放数据总线
for (i=0x80;i>0;i/=2) //位移8位
{ SCK=1; //上升沿读入
if (DATA) val=(val | i); //确定值
SCK=0;
}
DATA=0; //读应答信号,有应答为1,为应答为0 通过CPU下拉为应答
SCK=1; //第9个脉冲
_nop_(); _nop_(); _nop_(); //pulswith approx. 5 us
SCK=0;
DATA=1; //释放数据总线
temp_h=val;
val=0;

////低8位/////////////////////////////

DATA=1; //释放数据总线
for (i=0x80;i>0;i/=2) //位移8位
{ SCK=1; //上升沿读入
if (DATA) val=(val | i); //确定值
SCK=0;
}
DATA=1;//0; //不需要应答 通过CPU下拉为应答
SCK=1; //第9个脉冲
_nop_(); _nop_(); _nop_(); //pulswith approx. 5 us
SCK=0;
DATA=1; //释放数据总线
temp_LL=val;

}
////////////

char write(unsigned char value) //写一个字节 返回应答信号
//---------------------------------------------------------
{
unsigned char i ;
ack=0;
for (i=0x80;i>0;i/=2) //释放数据总线
{ if (i & value) DATA=1; //写入值
else DATA=0;
SCK=1; //上升沿写入
_nop_(); _nop_(); _nop_(); //延时
SCK=0;
}
DATA=1; //释放数据总线
SCK=1; //第9个脉冲
if (DATA==1) ack=1;
//读应答信号
SCK=0;
return ack; //error=1 表示没有应答
}
////////

void start_sht11(void) //启动
//--------------------------------------------------------
{
DATA=1; SCK=0; //数据为1,SCK=0
_nop_();
SCK=1; //第一个脉冲
_nop_();
DATA=0; //数据跌落
_nop_ ();
SCK=0; //完成一个脉冲
_nop_(); _nop_(); _nop_();
SCK=1; //再一个脉冲
_nop_();
DATA=1; //数据变为1
_nop_();
SCK=0; //完成该脉冲
}

//////////////////////////////////
void sht_rest(void) //复位

{
unsigned char i;
DATA=1; SCK=0; //数据为1 时钟为0
for(i=0;i<9;i++) //9 个脉冲为 复位
{ SCK=1;
SCK=0;
}
start_sht11(); //启动
}

////////////////////////////////

//测量温度或者是温度,返回校验值
text_a(unsigned char ml)
{
unsigned int i;

start_sht11(); //启动
write(ml);//写入测温度
if (ack==1)
{
sht_rest() ;//复位
write(ml);//写入测温度
}

//判断是否处于忙

// DATA=1;//释放数据总线
//for (i=0;i<65535;i++) if(DATA==0) break;

for (i=0;i<55535;i++){ if(DATA==0) break;else {xianshi();} }

read();//读温度

}

/////////温湿度处理//////

text_jishuan_temp11()
{
error=0;
ack=0;
sht_rest() ;//复位

text_a(TEMP_ML);

text_jishuan_temp();
key();
text_a(HUMI_ML);

text_jishuan_humi();

}

/////

//////////计算温度////
text_jishuan_temp()
{
float aa=0,bb=0,temp_zi;
int abcd=0;

aa=(float)temp_h*256+(float)temp_LL;
temp_zi=0.01*aa-40;

//

if (temp_zi<0)
{
temp_zi=0;
}
temp_zi=temp_zi*10;
xian_t=(int)temp_zi;//给显示值

}
///////计算湿度//////
text_jishuan_humi()
{
float aa=0,bb=0,humi_zi;
int abcd=0;

aa=(float)temp_h*256+(float)temp_LL;

bb=aa*aa*2.8/1000000;
aa=0.0405*aa;
aa=aa-4-bb;
humi_zi=aa;

//
humi_zi=humi_zi*10;
xian_h=(int)humi_zi;
}

///////延时///////
delay(int i)
{
while(--i);

}

///////显示处理///////
xianshi()
{
int abcd=0;
int i;
for (i=0;i<1;i++)
{
abcd=xian_h;
gwei=1;
swei=1;
bwei=1;
qwei=1;
P1=dispcode[abcd/100];
qwei=0;
delay(40);
qwei=1;
abcd=abcd%100 ;
P1=dispcode[abcd/10];
bwei=0;
delay(40);
bwei=1;

if(setbz_h^setbz_l)
{
if(setbz_h) abcd=set_h;
if(setbz_l) abcd=set_l;

P1=dispcode[abcd/10];
swei=0;
delay(40);
swei=1;
P1=dispcode[abcd%10];
gwei=0;
delay(40);
gwei=1;

}
else
{
abcd=xian_t;
P1=dispcode[abcd/100];
swei=0;
delay(40);
swei=1;
abcd=abcd%100 ;
P1=dispcode[abcd/10];
gwei=0;
delay(40);
gwei=1;
}
}
}

doing()
{
char xian_mi;
xian_mi=xian_t/10;
if((xian_mi<set_h)&(xian_t>set_l)) { motor=0;hot=0;speek=0;}
if(xian_mi>set_h) { motor=1;hot=0;speek=1;}
if(xian_mi<set_l) { motor=0;hot=1;speek=1;}
}

key()
{
if(set&setkey)
{
setkey=0;
if(setbz_l) {setbz_l=0;setbz_h=0;}
else
{ if(!setbz_h) setbz_h=1;
else {setbz_h=0;setbz_l=1;}
}
}
if(!set) setkey=1;

if(setup==0)
{
if(setbz_h==1)
{ if (set_h<=99) set_h++;}
if(setbz_l==1)
{ if ((set_l<set_h)&(set_l<=99)) set_l++;}
}

if(setdown==0)
{
if(setbz_h==1)
{ if ((set_h>set_l)&(set_h>=1)) set_h--;}
if(setbz_l==1)
{ if (set_l>=1) set_l--;}
}

}

//系统初始化///
csh()
{
P0=0XFF;
P1=1;
P2=0;
P3=0XFF;
}

/////////////////////////////////
///////////////////////
main()
{

set_h=22;//设置高温
set_l=20;//设置低温

csh();//系统初始化
while(1)
{
text_jishuan_temp11();//测温湿度
//xianshi();//显示
doing();//处理
key();//键处理
// xianshi();//显示

}
}

‘陆’ 请问SHT11是不是目前最好的温湿度传感器

SHT11是瑞士Sensirion公司生产的具有I2C总线接口的单片全校准数字式相对湿度和温度传感器。该传感器采用独特的CMOSens TM技术,具有数字式输出、免调试、免标定、免外围电路及全互换的特点。文中对传感器的性能特点、接口时序与命令进行了详细的阐述,给出了SHT11与单片机的接口电路及相应程序。 关键词:数字式;温湿度传感器;I2C总线;单片机1 概述温湿度的测量在仓储管理、生产制造、气象观测、科学研究以及日常生活中被广泛应用,传统的模拟式湿度传感器一般都要设计信号调理电路并需要经过复杂的校准和标定过程,因此测量精度难以保证,且在线性度、重复性、互换性、一致性等方面往往不尽人意。SHT11是瑞士Sensirion公司推出的基于CMOSensTM技术的新型温湿度传感器。该传感器将CMOS芯片技术与传感器技术结合起来,从而发挥出它们强大的优势互补作用。
2 性能特点SHT11温湿度传感器的主要特性如下:●将温湿度传感器、信号放大调理、A/D转换、I2C总线接口全部集成于一芯片(CMOSensTM技术);●可给出全校准相对湿度及温度值输出;●带有工业标准的I2C总线数字输出接口;●具有露点值计算输出功能;●具有卓越的长期稳定性;●湿度值输出分辨率为14位,温度值输出分辨率为12位,并可编程为12位和8位;●小体积(7.65×5.08×23.5mm),可表面贴装;●具有可靠的CRC数据传输校验功能;●片内装载的校准系数可保证100%互换性;●电源电压范围为2.4~5.5V;●电流消耗,测量时为550μA,平均为28μA,休眠时为3μA。

SHT11温湿度传感器采用SMD(LCC)表面贴片封装形式,管脚排列如图1所示,其引脚说明如下:(1)GND:接地端;(2)DATA:双向串行数据线;(3)SCK:串行时钟输入;(4)VDD电源端:0.4~5.5V电源端;(5~8)NC:空管脚。
3 工作原理SHT11的湿度检测运用电容式结构,并采用具有不同保护的“微型结构”检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度较高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误差。CMOSensTM技术不仅将温湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C总线等电路全部集成在一个芯片内。SHT11传感器的内部结构框图如图2所示。SHT11的每一个传感器都是在极为精确的湿度室中校准的。SHT11传感器的校准系数预先存在OTP内存中。经校准的相对湿度和温度传感器与一个14位的A/D转换器相连,可将转换后的数字温湿度值送给二线I2C总线器件,从而将数字信号转换为符合I2C总线协议的串行数字信号

‘柒’ 单片机通过温湿度传感器sht11控制草坪喷水,程序怎么写啊

大致流程 ,先读取温湿度, 然后进入比较程序
做一个迟滞控制, 湿度低于多少启动喷水,高于多少停止,同理,温度也这样处理

‘捌’ 求单片机程序关于温湿度。传感器采用DHT11,按键四个可以设置温湿度的上下限,显示用lcd1602,超限报警

#include <reg52.h>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
typedef unsigned char unint8; //unint8 代替undigned char 提高可移植性
typedef unsigned char unint16;
unsigned char str1[]={" "};
unsigned char str2[]={" "};
unsigned char code dis1[] = {" Xh RH: "}; //定义数组
unsigned char code dis2[] = {" DO T: "};
sbit buz=P1^0;
sbit TRH = P1^7;//温湿度传感器DHT11数据接入
sbit LCD_RS = P1^1;
sbit LCD_RW = P1^2;
sbit LCD_EN = P1^3;
unint8 TH_data,TL_data,RH_data,RL_data,CK_data;
unint8 TH_temp,TL_temp,RH_temp,RL_temp,CK_temp;
unint8 com_data,untemp,temp;
unint8 respond;
void initcom()
{
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
TR1=1;
REN=1;
SM0=0;
SM1=1;
EA=1;
ES=1;
}

void send(unsigned char temp)
{
//send biao zi
SBUF=temp;
while(!TI);
TI=0;
}

void sendwd()
{
//send wen
uint w_d ;
w_d=TH_data+128;
SBUF=w_d;
while(!TI);
TI=0;
}

void sendsd()
{
//send shi
SBUF=RH_data;
while(!TI);
TI=0;
}
/*********************************************************************************/
void delayNOP() //延时
{
_nop_();
_nop_();
_nop_();
_nop_();
}
/*********************************************************************************/

/*********************************************************************************/
// 毫秒级延时子程序
/*********************************************************************************/
void delay_ms(unsigned int ms)
{
unsigned char i;
while(ms--)
{
for(i = 0; i< 150; i++)
{
_nop_();
_nop_();
_nop_();
_nop_();
}
}
}
/*********************************************************************************/

/*********************************************************************************/
//5us级延时程序
/*********************************************************************************/
void delay_us()
{
unint8 i;
i--;
i--;
i--;
i--;
i--;
i--;
}
/********************************************************************************/

/********************************************************************************/
// 测试LCD忙碌状态
//lcd_busy()为1时,忙,等待。lcd_busy()为0时,闲,可写指令与数据。
/********************************************************************************/
bit lcd_busy()
{
bit result;
LCD_RS = 0;
LCD_RW = 1;
LCD_EN = 1;
delayNOP();
result = (bit)(P0&0x80);
LCD_EN = 0;
return(result);
}
/*******************************************************************************/

/*******************************************************************************/
// 写入指令数据到LCD
/*******************************************************************************/
void lcd_wcmd(unsigned char cmd)
{
while(lcd_busy());
LCD_RS = 0;
LCD_RW = 0;
LCD_EN = 0;
_nop_();
_nop_();
P0 = cmd;
delayNOP();
LCD_EN = 1;
delayNOP();
LCD_EN = 0;
}
/*****************************************************************************/

/*****************************************************************************/
//写显示数据到LCD
//RS=高电平,RW=低电平,E=高脉冲,D0-D7=数据。
/*****************************************************************************/
void lcd_wdata(unsigned char dat)
{
while(lcd_busy());
LCD_RS = 1;
LCD_RW = 0;
LCD_EN = 0;
P0 = dat;
delayNOP();
LCD_EN = 1;
delayNOP();
LCD_EN = 0;
}
/****************************************************************************/

/****************************************************************************/
//LCD初始化设定
/****************************************************************************/
void lcd_init()
{
delay_ms(15);
lcd_wcmd(0x38); //16*2显示,5*7点阵,8位数据
delay_ms(5);
lcd_wcmd(0x38);
delay_ms(5);
lcd_wcmd(0x38);
delay_ms(5);
lcd_wcmd(0x0c); //显示开,关光标
delay_ms(5);
lcd_wcmd(0x06); //移动光标
delay_ms(5);
//lcd_wcmd(0x01); //清除LCD的显示内容,如果屏幕过暗,可将这俩句删除
//delay_ms(5);
}
/****************************************************************************/

/****************************************************************************/
//设定LCD显示位置
/****************************************************************************/
void lcd_dis_pos(unsigned char pos)
{
lcd_wcmd(pos | 0x80); //数据指针=80+地址变量
}
/****************************************************************************/

/****************************************************************************/
//收发信号检测,数据读取
/****************************************************************************/
char receive()
{
unint8 i;
com_data=0;
for(i=0;i<=7;i++)
{
respond=2;
while((!TRH)&&respond++);
delay_us();
delay_us();
delay_us();
if(TRH)
{
temp=1;
respond=2;
while((TRH)&&respond++);
}
else
temp=0;
com_data<<=1;
com_data|=temp;
}
return(com_data);
}
/****************************************************************************/

/****************************************************************************/
//湿度读取子程序
//温度高8位== TL_data
//温度低8位== TH_data
//湿度高8位== RH_data
//湿度低8位== RH_data
//校验 8位 == CK_data
//调用的程序有 delay();, Delay_5us();,RECEIVE();
/***************************************************************************/
void read_TRH()
{
//主机拉低18ms
TRH=0;
delay_ms(18);
TRH=1;
//DATA总线由上拉电阻拉高 主机延时20us
delay_us();
delay_us();
delay_us();
delay_us();
//delay_us();
//delay_us();delay_us();delay_us();delay_us();
//主机设为输入 判断从机响应信号
TRH=1;
//判断DHT11是否有低电平响应信号 如不响应则跳出,响应则向下运行
if(!TRH)
{
respond=2;
//判断DHT11发出 80us 的低电平响应信号是否结束
while((!TRH)&& respond++);
respond=2;
//判断从机是否发出 80us 的高电平,如发出则进入数据接收状态
while(TRH && respond++);
//数据接收状态
RH_temp = receive();
RL_temp = receive();
TH_temp = receive();
TL_temp = receive();
CK_temp = receive();
TRH=1;
//数据校验
untemp=(RH_temp+RL_temp+TH_temp+TL_temp);
if(untemp==CK_temp)
{
RH_data = RH_temp;
RL_data = RL_temp;
TH_data = TH_temp;
TL_data = TL_temp;
CK_data = CK_temp;
}
}
//湿度整数部分
str1[0] = (char)(0X30+RH_data/10);
str1[1] = (char)(0X30+RH_data%10);
str1[2] = 0x2e; //小数点
//湿度小数部分
str1[3] = (char)(0X30+RL_data/10);
str1[5] = 0X25; //"%"
str1[6] = 0X52; //"R"
str1[7] = 0X48; //"H"
//温度整数部分
str2[0] = (char)(0X30+TH_data/10);
str2[1] = (char)(0X30+TH_data%10);
str2[2] = 0x2e; //小数点
//温度小数部分
str2[3] = (char)(0X30+TL_data/10);
str2[5] = 0X27; //"'"
str2[6] = 0X43; //"C"
}
/****************************************************************************/
//冬天适宜温湿度 夏天适宜温湿度
//湿度:30%--80% 30%--60%
//温度:18℃--25℃ 23℃--28℃
/****************************************************************************/
void baoj()//报警函数
{
if(RH_data>=80) //湿度上限80%
{

buz=0;
delay_ms(200);
buz=1;
delay_ms(10);

}
else if(RH_data<=30) //湿度下限30%
{

buz=0;
delay_ms(200);
buz=1;
delay_ms(10);

}
else if(TH_data>=25) //温度上限25℃
{

buz=0;
delay_ms(200);
buz=1;
delay_ms(10);

}
else if(TH_data<=18) //温度下限18℃
{

buz=0;
delay_ms(200);
buz=1;
delay_ms(10);

}
else
{
buz=1;
}
}

/****************************************************************************/
//主函数
//TH,TL,RH,RL分别代表温湿度的整数和小数部分
/****************************************************************************/
void main()
{

lcd_init();
initcom();
delay_us();

while(1)
{
unsigned char i,n=0x40,m;
read_TRH();
//写字符
for(i=0;i<=7;i++)
{
lcd_dis_pos(i); //显示字符
lcd_wdata(dis1[i]);
lcd_dis_pos(n+i); //显示字符
lcd_wdata(dis2[i]);
}
//写湿度数据
m=0x08;
for(i=0;i<=7;i++)
{
lcd_dis_pos(m);
lcd_wdata(str1[i]);
m++;
}
//写温度数据
m=0x48;
for(i=0;i<=7;i++)
{
lcd_dis_pos(m);
lcd_wdata(str2[i]);
m++;
}
//延时
delay_ms(500);
baoj();//报警
send(0xff);//wsd flags
//delay_ms(10);
sendwd();
//delay_ms(10);
sendsd();
//delay_ms(10);
}
}

‘玖’ 利用单片机开发板和sht11温湿度传感器连接怎么提取温湿度传感器的数据到开发板

这个程序网上非常多,也非常成熟,就是按顺序来就行,上网找一下就O啦

阅读全文

与sht11温湿度传感器程序普中单片机相关的资料

热点内容
什么手机app去红眼 浏览:542
fpga如何编程 浏览:184
中国版我的世界小游戏服务器地址 浏览:335
人教版化学高中PDF 浏览:323
庆国庆编程作品 浏览:470
在线将jpg文件转pdf 浏览:1000
丽水文档加密软件哪家好 浏览:364
哪个公司的程序员好 浏览:292
我的世界网易版4级压缩木剑 浏览:454
粉笔二建app叫什么 浏览:928
解压flstudio视频教程 浏览:356
研发工程师文件夹管理 浏览:156
为桌面某个应用添加密码如何设置 浏览:194
冀云app的答题模式在哪里 浏览:754
体系助理工程师是搞编程的吗 浏览:675
播放蓝光文件夹apk 浏览:1000
如何重新注册命令符 浏览:16
javadecodeencode 浏览:592
无线技术原理pdf 浏览:248
闻人暖的小说在哪个app 浏览:137