A. 什麼是交叉編譯為什麼要使用交叉編譯
就是指編譯器在某一個平台下能夠編譯出另外一個平台下運行的程序
主要是為了多平台應用程序使用的
比如某一個程序,在windows下和linux和MacOS下都有相應的運行版本,使用交叉編譯就可以在一個平台下全部完成,而不用切換到對應的平台再去編譯
B. 交叉編譯器的介紹
交叉編譯器簡介 在一種計算機環境中運行的編譯程序,能編譯出在另外一種環境下運行的代碼
C. 什麼是交叉編譯環境
交叉編譯(cross-compilation)是指,在某個主機平台上(比如PC上)用交叉編譯器編譯出可在其他平台上(比如ARM上)運行的代碼的過程。
D. 交叉編譯器為什麼叫交叉編譯交叉
交叉編譯這個概念的出現和流行是和嵌入式系統的廣泛發展同步的。我們常用的計算機軟體,都需要通過編譯的方式,把使用高級計算機語言編寫的代碼(比如C代碼)編譯(compile)成計算機可以識別和執行的二進制代碼。比如,我們在Windows平台上,可使用Visual C++開發環境,編寫程序並編譯成可執行程序。這種方式下,我們使用PC平台上的Windows工具開發針對Windows本身的可執行程序,這種編譯過程稱為native compilation,中文可理解為本機編譯。
然而,在進行嵌入式系統的開發時,運行程序的目標平台通常具有有限的存儲空間和運算能力,比如常見的 ARM 平台,其一般的靜態存儲空間大概是16到32MB,而CPU的主頻大概在100MHz到500MHz之間。這種情況下,在ARM平台上進行本機編譯就不太可能了,這是因為一般的編譯工具鏈(compilation tool chain)需要很大的存儲空間,並需要很強的CPU運算能力。
為了解決這個問題,交叉編譯工具就應運而生了。通過交叉編譯工具,我們就可以在CPU能力很強、存儲空間足夠的主機平台上(比如PC上)編譯出針對其他平台的可執行程序。
要進行交叉編譯,我們需要在主機平台上安裝對應的交叉編譯工具鏈(cross compilation tool chain),然後用這個交叉編譯工具鏈編譯我們的源代碼,最終生成可在目標平台上運行的代碼。
E. 為什麼要用交叉編譯器
交叉編譯,簡單地說,就是在一個平台上生成另一個平台上的可執行代碼。這里需要注意的是所謂平台,實際上包含兩個概念:體系結構(Architecture)、操作系統(Operating System)。同一個體系結構可以運行不同的操作系統;同樣,同一個操作系統也可以在不同的體系結構上運行。舉例來說,我們常說的x86 Linux平台實際上是Intel x86體系結構和Linux for x86操作系統的統稱;而x86 WinNT平台實際上是Intel x86體系結構和Windows NT for x86操作系統的簡稱。
有時是因為目的平台上不允許或不能夠安裝我們所需要的編譯器,而我們又需要這個編譯器的某些特徵;有時是因為目的平台上的資源貧乏,無法運行我們所需要編譯器;有時又是因為目的平台還沒有建立,連操作系統都沒有,根本談不上運行什麼編譯器。
綜上,在嵌入式開發的時候我們就要使用交叉編譯器。
F. 什麼是交叉編譯器
交叉編譯器:在一種計算機環境中運行的編譯程序,能編譯出在另外一種環境下運行的代碼
G. 交叉編譯器是能夠編譯兩種不同語言的編譯器,比如C和c 加加
交叉編譯器是指可以在一種平台上直接編譯出能在另一種平台下運行的程序的編譯器,例如VS的Linux C++開發使用的VC++ Linux編譯器,它可以在Windows平台下編譯出Linux C++程序。
H. 什麼是交叉編譯環境
交叉編譯(cross-compilation)是指,在某個主機平台上(比如PC上)用交叉編譯器編譯出可在其他平台上(比如ARM上)運行的代碼的過程。
交叉編譯這個概念的出現和流行是和嵌入式系統的廣泛發展同步的。我們常用的計算機軟體,都需要通過編譯的方式,把使用高級計算機語言編寫的代碼(比如 C代碼)編譯(compile)成計算機可以識別和執行的二進制代碼。
I. 什麼是交叉編譯,為什麼要採用交叉編譯
在一個平台架構上,編譯另一個平台架構的可執行代碼,就是交叉編譯。
例如在x86架構的PC上編譯arm嵌入式設備的可執行程序。
交叉編譯是不得不用,
首先在目標設備的系統還沒引導起來的時候,編譯目標平台的引導程序,顯然只能交叉編譯。
還有因為目標設備往往能力太低,沒法安裝編譯器,或者勉強安裝了,也慢得像蝸牛。
J. 交叉編譯器的分類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高階語言作為輸入,輸出也是高階語言的編譯器。例如: 自動並行化編譯器經常採用一種高階語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。
預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。
編譯器前端(frontend)
前端主要負責解析(parse)輸入的源代碼,由語法分析器和語意分析器協同工作。語法分析器負責把源代碼中的『單詞』(Token)找出來,語意分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端語法分析器看到的是「a, =, b , +, c;」,語意分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化和處理。
編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類:函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。