導航:首頁 > 源碼編譯 > 遺傳演算法收斂性分析

遺傳演算法收斂性分析

發布時間:2022-07-04 01:58:58

『壹』 遺傳演算法有收斂性分析嗎有的話怎麼分析呢

神經網路的設計要用到遺傳演算法,遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。 1.遺傳演算法在網路學習中的應用 在神經網路中,遺傳演算法可用於網路的學習。這時,它在...

『貳』 請教各位,matlab遺傳演算法運行結果分析,收斂嗎

同樓上,採取最優保存策略,也就是每次迭代的最優個體保存好,不隨便進行交叉、變異操作,即便進行這些操作,也只在產生的新個體比原個體更優秀時才替換原個體。
當然,即便這樣還會造成不收斂,即每次迭代的最有結果都一樣,不往好的方向進化,那麼這時候就要查看下選擇運算元、交叉操作、變異操作有沒有問題了。

『叄』 遺傳演算法的收斂性問題

是運算元有問題,交叉的方法都是比較簡單的,但對於某些情況可能並不好用,也就是說演算法本身無法體現出優勝劣汰的規則,可能因此導致無法收斂。

收斂數列令為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|an-A|<b,則數列存在極限A,數列被稱為收斂。非收斂的數列被稱作「發散」(divergence)數列。

可見收斂不是指數值越來越小,而是指與極限值的距離(即差的絕對值)越來越小,只要你的目標函數是壓縮映射,那麼使用遺傳演算法就一定可以計算出全局收斂的近似值。

(3)遺傳演算法收斂性分析擴展閱讀:

由於遺傳演算法不能直接處理問題空間的參數,因此必須通過編碼將要求解的問題表示成遺傳空間的染色體或者個體。這一轉換操作就叫做編碼,也可以稱作(問題的)表示(representation)。

遺傳演算法在搜索進化過程中一般不需要其他外部信息,僅用評估函數來評估個體或解的優劣,並作為以後遺傳操作的依據。由於遺傳演算法中,適應度函數要比較排序並在此基礎上計算選擇概率,所以適應度函數的值要取正值。由此可見,在不少場合,將目標函數映射成求最大值形式且函數值非負的適應度函數是必要的。

『肆』 遺傳演算法的優缺點

優點:

1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。

另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。

2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。

3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。

另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。

4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。

5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。

缺點:

1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。

2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。

3、遺傳演算法效率通常低於其他傳統的優化方法。

4、遺傳演算法容易出現過早收斂的問題。

(4)遺傳演算法收斂性分析擴展閱讀

遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。

函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。

為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。

『伍』 遺傳演算法的數學基礎的目錄

第2版前言
前言
緒論
0.1 遺傳演算法是一種仿生優化演算法
0.2 遺傳演算法的發展與現狀
0.3 遺傳演算法的基礎理論研究
第1章 遺傳演算法的幾何理論
1.1 遺傳演算法的基本概念
1.2 遺傳機制與遺傳演算法
1.3 遺傳機制的幾何表示
1.4 雜交運算元的幾何性質
1.5 遺傳機制的過程分析
1.6 遺傳演算法的幾何解釋
第2章 遺傳演算法的馬氏鏈模型
2.1 馬爾可夫鏈的定義及性質
2.2 標准遺傳演算法的馬氏鏈模型
2.3 改進遺傳演算法的馬氏鏈模型
2.4 優勝劣汰遺傳演算法的馬氏鏈模型
2.5 等價類遺傳演算法的馬氏鏈模型
2.6 遺傳演算法的馬氏決策模型
第3章 遺傳演算法收斂性的一般理論
3.l 遺傳演算法收斂的定義及性質
3.2 遺傳演算法概率收斂定理
3.3 抽象遺傳演算法的概率收斂定理
3.4 遺傳演算法的幾乎處處收斂定理
3.5 遺傳演算法的漸近收斂定理
3.6 遺傳演算法的停時計算問題
參考文獻

『陸』 遺傳演算法為什麼會早熟收斂

變異程度設置太小
參考函數里的極值概念
你在一段連續函數里尋找最大的一個值,如果你搜索的范圍越小,你所找到的最大值是整段函數的最大值的可能性就越小
遺傳演算法跟搜索演算法其實差不多意思 你變異越少 等於你搜索范圍越小 局限在某個集合之內 這就叫早熟收斂

『柒』 遺傳演算法具體應用

1、函數優化

函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。

2、組合優化

隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。

此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。

3、車間調度

車間調度問題是一個典型的NP-Hard問題,遺傳演算法作為一種經典的智能演算法廣泛用於車間調度中,很多學者都致力於用遺傳演算法解決車間調度問題,現今也取得了十分豐碩的成果。

從最初的傳統車間調度(JSP)問題到柔性作業車間調度問題(FJSP),遺傳演算法都有優異的表現,在很多算例中都得到了最優或近優解。


(7)遺傳演算法收斂性分析擴展閱讀:

遺傳演算法的缺點

1、編碼不規范及編碼存在表示的不準確性。

2、單一的遺傳演算法編碼不能全面地將優化問題的約束表示出來。考慮約束的一個方法就是對不可行解採用閾值,這樣,計算的時間必然增加。

3、遺傳演算法通常的效率比其他傳統的優化方法低。

4、遺傳演算法容易過早收斂。

5、遺傳演算法對演算法的精度、可行度、計算復雜性等方面,還沒有有效的定量分析方法。

『捌』 遺傳演算法的優缺點

1、早熟。這是最大的缺點,即演算法對新空間的探索能力是有限的,也容易收斂到局部最優解。
2、大量計算。涉及到大量個體的計算,當問題復雜時,計算時間是個問題。
3、處理規模小。目前對於維數較高的問題,還是很難處理和優化的。
4、難於處理非線性約束。對非線性約束的處理,大部分演算法都是添加懲罰因子,這是一筆不小的開支。
5、穩定性差。因為演算法屬於隨機類演算法,需要多次運算,結果的可靠性差,不能穩定的得到解。
大致這些,lz可查閱相關專業書籍!

『玖』 遺傳演算法求解

遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。

一、遺傳演算法的特點

1.遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。

這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,復蓋面大,利於全局擇優。

2.遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。

由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。

3.遺傳演算法有極強的容錯能力

遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,遺傳演算法有很高的容錯能力。

4.遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。

這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最優解的產生,變異體現了全局最優解的復蓋。

5.遺傳演算法具有隱含的並行性

遺傳演算法的基礎理論是圖式定理。它的有關內容如下:

(1)圖式(Schema)概念

一個基因串用符號集{0,1,*}表示,則稱為一個因式;其中*可以是0或1。例如:H=1x x 0 x x是一個圖式。

(2)圖式的階和長度

圖式中0和1的個數稱為圖式的階,並用0(H)表示。圖式中第1位數字和最後位數字間的距離稱為圖式的長度,並用δ(H)表示。對於圖式H=1x x0x x,有0(H)=2,δ(H)=4。

(3)Holland圖式定理

低階,短長度的圖式在群體遺傳過程中將會按指數規律增加。當群體的大小為n時,每代處理的圖式數目為0(n3)。

遺傳演算法這種處理能力稱為隱含並行性(Implicit Parallelism)。它說明遺傳演算法其內在具有並行處理的特質。

二、遺傳演算法的應用關鍵

遺傳演算法在應用中最關鍵的問題有如下3個

1.串的編碼方式

這本質是問題編碼。一般把問題的各種參數用二進制編碼,構成子串;然後把子串拼接構成「染色體」串。串長度及編碼形式對演算法收斂影響極大。

2.適應函數的確定

適應函數(fitness function)也稱對象函數(object function),這是問題求解品質的測量函數;往往也稱為問題的「環境」。一般可以把問題的模型函數作為對象函數;但有時需要另行構造。

3.遺傳演算法自身參數設定

遺傳演算法自身參數有3個,即群體大小n、交叉概率Pc和變異概率Pm。

群體大小n太小時難以求出最優解,太大則增長收斂時間。一般n=30-160。交叉概率Pc太小時難以向前搜索,太大則容易破壞高適應值的結構。一般取Pc=0.25-0.75。變異概率Pm太小時難以產生新的基因結構,太大使遺傳演算法成了單純的隨機搜索。一般取Pm=0.01—0.2。

三、遺傳演算法在神經網路中的應用

遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。

1.遺傳演算法在網路學習中的應用

在神經網路中,遺傳演算法可用於網路的學習。這時,它在兩個方面起作用

(1)學習規則的優化

用遺傳演算法對神經網路學習規則實現自動優化,從而提高學習速率。

(2)網路權系數的優化

用遺傳演算法的全局優化及隱含並行性的特點提高權系數優化速度。

2.遺傳演算法在網路設計中的應用

用遺傳演算法設計一個優秀的神經網路結構,首先是要解決網路結構的編碼問題;然後才能以選擇、交叉、變異操作得出最優結構。編碼方法主要有下列3種:

(1)直接編碼法

這是把神經網路結構直接用二進制串表示,在遺傳演算法中,「染色體」實質上和神經網路是一種映射關系。通過對「染色體」的優化就實現了對網路的優化。

(2)參數化編碼法

參數化編碼採用的編碼較為抽象,編碼包括網路層數、每層神經元數、各層互連方式等信息。一般對進化後的優化「染色體」進行分析,然後產生網路的結構。

(3)繁衍生長法

這種方法不是在「染色體」中直接編碼神經網路的結構,而是把一些簡單的生長語法規則編碼入「染色體」中;然後,由遺傳演算法對這些生長語法規則不斷進行改變,最後生成適合所解的問題的神經網路。這種方法與自然界生物地生長進化相一致。

3.遺傳演算法在網路分析中的應用

遺傳演算法可用於分析神經網路。神經網路由於有分布存儲等特點,一般難以從其拓撲結構直接理解其功能。遺傳演算法可對神經網路進行功能分析,性質分析,狀態分析。

遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還有各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最擾解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對遺傳演算法,還需要進一步研究其數學基礎理論;還需要在理論上證明它與其它優化技術的優劣及原因;還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。

『拾』 如何讓遺傳演算法解旅行商問題快速收斂

想要快速收斂的話可以直接減小每一步的半徑,但是更容易被局部峰值困住,可以通過選取幾個差距較大的初始點多次運行來提高精確度。
最根本的解決方法還是提高計算適應度等步驟的效率。

閱讀全文

與遺傳演算法收斂性分析相關的資料

熱點內容
fetchrowphp 瀏覽:520
灰色的c語言編譯器 瀏覽:12
消除類游戲演算法 瀏覽:774
php前補零 瀏覽:731
演算法推薦廣告倫理問題 瀏覽:921
亞馬遜雲伺服器的選擇 瀏覽:810
單片機頻率發生器 瀏覽:732
備份與加密 瀏覽:625
用什麼app可以看論壇 瀏覽:54
javajdbcmysql連接 瀏覽:475
製作linux交叉編譯工具鏈 瀏覽:752
編程負數除以正數 瀏覽:514
app和aso有什麼區別 瀏覽:327
手機vmap是什麼文件夾 瀏覽:38
塔科夫鎖服如何選擇伺服器 瀏覽:290
消費者生產者問題java 瀏覽:63
程序員筱柒顧默結婚的時候 瀏覽:578
安卓截長屏怎麼弄 瀏覽:477
優信辦理解壓手續怎麼那麼慢 瀏覽:609
私有雲伺服器一體機安全嗎 瀏覽:430