導航:首頁 > 源碼編譯 > id3演算法缺點

id3演算法缺點

發布時間:2022-07-05 13:58:50

① 常見決策樹分類演算法都有哪些

在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。

② 用python實現紅酒數據集的ID3,C4.5和CART演算法

ID3演算法介紹
ID3演算法全稱為迭代二叉樹3代演算法(Iterative Dichotomiser 3)
該演算法要先進行特徵選擇,再生成決策樹,其中特徵選擇是基於「信息增益」最大的原則進行的。
但由於決策樹完全基於訓練集生成的,有可能對訓練集過於「依賴」,即產生過擬合現象。因此在生成決策樹後,需要對決策樹進行剪枝。剪枝有兩種形式,分別為前剪枝(Pre-Pruning)和後剪枝(Post-Pruning),一般採用後剪枝。
信息熵、條件熵和信息增益
信息熵:來自於香農定理,表示信息集合所含信息的平均不確定性。信息熵越大,表示不確定性越大,所含的信息量也就越大。
設x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

為信息集合X的n個取值,則x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵為:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

條件熵:指已知某個隨機變數的情況下,信息集合的信息熵。
設信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

組成的隨機變數集合Y,則隨機變數(X,Y)的聯合概率分布為
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

條件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和貝葉斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化簡條件熵的計算公式為:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-條件熵,用於衡量在知道已知隨機變數後,信息不確定性減小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代碼實現
import numpy as np
import math

def calShannonEnt(dataSet):
""" 計算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特徵列label等於value,並且過濾掉改特徵列的數據集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通過計算信息增益選擇最合適的特徵"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #計算條件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #計算信息增益

if infoGain >= bestInfoGain: #選擇最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通過訓練集生成決策樹 """
featureName = featNames[:] # 拷貝featNames,此處不能直接用賦值操作,否則新變數會指向舊變數的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一個類別
return classList[0]
if dataSet.shape[1] == 1: #當所有特徵屬性都利用完仍然無法判斷樣本屬於哪一類,此時歸為該數據集中數量最多的那一類
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #選擇特徵
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已選特徵列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已選特徵列所包含的類別, 通過遞歸生成決策樹
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用訓練所得的決策樹進行分類 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子節點仍是樹,則遞歸查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鳶尾花數據集對該演算法進行測試。由於ID3演算法只能用於標稱型數據,因此用在對連續型的數值數據上時,還需要對數據進行離散化,離散化的方法稍後說明,此處為了簡化,先使用每一種特徵所有連續性數值的中值作為分界點,小於中值的標記為1,大於中值的標記為0。訓練1000次,統計准確率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #對該過程進行10000次
trainData, testData = train_test_split(data) #區分測試集和訓練集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #對訓練集每個特徵,以中值為分界點進行離散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
輸出結果為:score: 0.7335,即准確率有73%。每次訓練和預測的准確率分布如下:

數據離散化
然而,在上例中對特徵值離散化的劃分點實際上過於「野蠻」,此處介紹一種通過信息增益最大的標准來對數據進行離散化。原理很簡單,當信息增益最大時,說明用該點劃分能最大程度降低數據集的不確定性。
具體步驟如下:

對每個特徵所包含的數值型特徵值排序
對相鄰兩個特徵值取均值,這些均值就是待選的劃分點
用每一個待選點把該特徵的特徵值劃分成兩類,小於該特徵點置為1, 大於該特徵點置為0,計算此時的條件熵,並計算出信息增益
選擇信息使信息增益最大的劃分點進行特徵離散化
實現代碼如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用於把每個特徵的連續值按照區分點分成兩類,加入tag參數,可用於標記篩選的是哪一部分數據"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 對數據每個特徵的數值型特徵值進行離散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #對於每一個特徵
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相鄰兩個值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #對於每個劃分點
subEntropy = 0.0 #計算該劃分點的信息熵
for tag in range(2): #分別劃分為兩類
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 計算信息增益
infoGain = entropy - subEntropy
## 選擇最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新對數據進行離散化,並重復該步驟1000次,同時用sklearn中的DecisionTreeClassifier對相同數據進行分類,分別統計平均准確率。運行代碼如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #對該過程進行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #區分測試集和訓練集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根據信息增益離散化
for i in range(testData.shape[1]-1): #根據測試集的區分點離散化訓練集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
兩者准確率分別為:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准確率分布如下:

兩者的結果非常一樣。
(但是。。為什麼根據信息熵離散化得到的准確率比直接用均值離散化的准確率還要低啊??哇的哭出聲。。)

最後一次決策樹圖形如下:

決策樹剪枝
由於決策樹是完全依照訓練集生成的,有可能會有過擬合現象,因此一般會對生成的決策樹進行剪枝。常用的是通過決策樹損失函數剪枝,決策樹損失函數表示為:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示葉子節點t的熵值,T表示決策樹的深度。前項∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是決策樹的經驗損失函數當隨著T的增加,該節點被不停的劃分的時候,熵值可以達到最小,然而T的增加會使後項的值增大。決策樹損失函數要做的就是在兩者之間進行平衡,使得該值最小。
對於決策樹損失函數的理解,如何理解決策樹的損失函數? - 陶輕松的回答 - 知乎這個回答寫得挺好,可以按照答主的思路理解一下

C4.5演算法
ID3演算法通過信息增益來進行特徵選擇會有一個比較明顯的缺點:即在選擇的過程中該演算法會優先選擇類別較多的屬性(這些屬性的不確定性小,條件熵小,因此信息增益會大),另外,ID3演算法無法解決當每個特徵屬性中每個分類都只有一個樣本的情況(此時每個屬性的條件熵都為0)。
C4.5演算法ID3演算法的改進,它不是依據信息增益進行特徵選擇,而是依據信息增益率,它添加了特徵分裂信息作為懲罰項。定義分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



則信息增益率為:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

關於ID3和C4.5演算法
在學習分類回歸決策樹演算法時,看了不少的資料和博客。關於這兩個演算法,ID3演算法是最早的分類演算法,這個演算法剛出生的時候其實帶有很多缺陷:

無法處理連續性特徵數據
特徵選取會傾向於分類較多的特徵
沒有解決過擬合的問題
沒有解決缺失值的問題
即該演算法出生時是沒有帶有連續特徵離散化、剪枝等步驟的。C4.5作為ID3的改進版本彌補列ID3演算法不少的缺陷:

通過信息最大增益的標准離散化連續的特徵數據
在選擇特徵是標准從「最大信息增益」改為「最大信息增益率」
通過加入正則項系數對決策樹進行剪枝
對缺失值的處理體現在兩個方面:特徵選擇和生成決策樹。初始條件下對每個樣本的權重置為1。
特徵選擇:在選取最優特徵時,計算出每個特徵的信息增益後,需要乘以一個**「非缺失值樣本權重占總樣本權重的比例」**作為系數來對比每個特徵信息增益的大小
生成決策樹:在生成決策樹時,對於缺失的樣本我們按照一定比例把它歸屬到每個特徵值中,比例為該特徵每一個特徵值占非缺失數據的比重
關於C4.5和CART回歸樹
作為ID3的改進版本,C4.5克服了許多缺陷,但是它自身還是存在不少問題:

C4.5的熵運算中涉及了對數運算,在數據量大的時候效率非常低。
C4.5的剪枝過於簡單
C4.5隻能用於分類運算不能用於回歸
當特徵有多個特徵值是C4.5生成多叉樹會使樹的深度加深
————————————————
版權聲明:本文為CSDN博主「Sarah Huang」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44794704/article/details/89406612

③ 決策樹的演算法

C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
具體演算法步驟如下;
1創建節點N
2如果訓練集為空,在返回節點N標記為Failure
3如果訓練集中的所有記錄都屬於同一個類別,則以該類別標記節點N
4如果候選屬性為空,則返回N作為葉節點,標記為訓練集中最普通的類;
5for each 候選屬性 attribute_list
6if 候選屬性是連續的then
7對該屬性進行離散化
8選擇候選屬性attribute_list中具有最高信息增益率的屬性D
9標記節點N為屬性D
10for each 屬性D的一致值d
11由節點N長出一個條件為D=d的分支
12設s是訓練集中D=d的訓練樣本的集合
13if s為空
14加上一個樹葉,標記為訓練集中最普通的類
15else加上一個有C4.5(R - {D},C,s)返回的點 背景:
分類與回歸樹(CART——Classification And Regression Tree)) 是一種非常有趣並且十分有效的非參數分類和回歸方法。它通過構建二叉樹達到預測目的。
分類與回歸樹CART 模型最早由Breiman 等人提出,已經在統計領域和數據挖掘技術中普遍使用。它採用與傳統統計學完全不同的方式構建預測准則,它是以二叉樹的形式給出,易於理解、使用和解釋。由CART 模型構建的預測樹在很多情況下比常用的統計方法構建的代數學預測准則更加准確,且數據越復雜、變數越多,演算法的優越性就越顯著。模型的關鍵是預測准則的構建,准確的。
定義:
分類和回歸首先利用已知的多變數數據構建預測准則, 進而根據其它變數值對一個變數進行預測。在分類中, 人們往往先對某一客體進行各種測量, 然後利用一定的分類准則確定該客體歸屬那一類。例如, 給定某一化石的鑒定特徵, 預測該化石屬那一科、那一屬, 甚至那一種。另外一個例子是, 已知某一地區的地質和物化探信息, 預測該區是否有礦。回歸則與分類不同, 它被用來預測客體的某一數值, 而不是客體的歸類。例如, 給定某一地區的礦產資源特徵, 預測該區的資源量。

④ 決策樹之ID3演算法及其Python實現

決策樹之ID3演算法及其Python實現

1. 決策樹背景知識
??決策樹是數據挖掘中最重要且最常用的方法之一,主要應用於數據挖掘中的分類和預測。決策樹是知識的一種呈現方式,決策樹中從頂點到每個結點的路徑都是一條分類規則。決策樹演算法最先基於資訊理論發展起來,經過幾十年發展,目前常用的演算法有:ID3、C4.5、CART演算法等。
2. 決策樹一般構建過程
??構建決策樹是一個自頂向下的過程。樹的生長過程是一個不斷把數據進行切分細分的過程,每一次切分都會產生一個數據子集對應的節點。從包含所有數據的根節點開始,根據選取分裂屬性的屬性值把訓練集劃分成不同的數據子集,生成由每個訓練數據子集對應新的非葉子節點。對生成的非葉子節點再重復以上過程,直到滿足特定的終止條件,停止對數據子集劃分,生成數據子集對應的葉子節點,即所需類別。測試集在決策樹構建完成後檢驗其性能。如果性能不達標,我們需要對決策樹演算法進行改善,直到達到預期的性能指標。
??註:分裂屬性的選取是決策樹生產過程中的關鍵,它決定了生成的決策樹的性能、結構。分裂屬性選擇的評判標準是決策樹演算法之間的根本區別。
3. ID3演算法分裂屬性的選擇——信息增益
??屬性的選擇是決策樹演算法中的核心。是對決策樹的結構、性能起到決定性的作用。ID3演算法基於信息增益的分裂屬性選擇。基於信息增益的屬性選擇是指以信息熵的下降速度作為選擇屬性的方法。它以的資訊理論為基礎,選擇具有最高信息增益的屬性作為當前節點的分裂屬性。選擇該屬性作為分裂屬性後,使得分裂後的樣本的信息量最大,不確定性最小,即熵最小。
??信息增益的定義為變化前後熵的差值,而熵的定義為信息的期望值,因此在了解熵和信息增益之前,我們需要了解信息的定義。
??信息:分類標簽xi 在樣本集 S 中出現的頻率記為 p(xi),則 xi 的信息定義為:?log2p(xi) 。
??分裂之前樣本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 為分類標簽的個數。
??通過屬性A分裂之後樣本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始樣本集通過屬性A的屬性值劃分為 m 個子樣本集,|Sj| 表示第j個子樣本集中樣本數量,|S| 表示分裂之前數據集中樣本總數量。
??通過屬性A分裂之後樣本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??註:分裂屬性的選擇標准為:分裂前後信息增益越大越好,即分裂後的熵越小越好。
4. ID3演算法
??ID3演算法是一種基於信息增益屬性選擇的決策樹學習方法。核心思想是:通過計算屬性的信息增益來選擇決策樹各級節點上的分裂屬性,使得在每一個非葉子節點進行測試時,獲得關於被測試樣本最大的類別信息。基本方法是:計算所有的屬性,選擇信息增益最大的屬性分裂產生決策樹節點,基於該屬性的不同屬性值建立各分支,再對各分支的子集遞歸調用該方法建立子節點的分支,直到所有子集僅包括同一類別或沒有可分裂的屬性為止。由此得到一棵決策樹,可用來對新樣本數據進行分類。
ID3演算法流程:
(1) 創建一個初始節點。如果該節點中的樣本都在同一類別,則演算法終止,把該節點標記為葉節點,並用該類別標記。
(2) 否則,依據演算法選取信息增益最大的屬性,該屬性作為該節點的分裂屬性。
(3) 對該分裂屬性中的每一個值,延伸相應的一個分支,並依據屬性值劃分樣本。
(4) 使用同樣的過程,自頂向下的遞歸,直到滿足下面三個條件中的一個時就停止遞歸。
??A、待分裂節點的所有樣本同屬於一類。
??B、訓練樣本集中所有樣本均完成分類。
??C、所有屬性均被作為分裂屬性執行一次。若此時,葉子結點中仍有屬於不同類別的樣本時,選取葉子結點中包含樣本最多的類別,作為該葉子結點的分類。
ID3演算法優缺點分析
優點:構建決策樹的速度比較快,演算法實現簡單,生成的規則容易理解。
缺點:在屬性選擇時,傾向於選擇那些擁有多個屬性值的屬性作為分裂屬性,而這些屬性不一定是最佳分裂屬性;不能處理屬性值連續的屬性;無修剪過程,無法對決策樹進行優化,生成的決策樹可能存在過度擬合的情況。

⑤ 請比較k近鄰,決策樹和樸素貝葉斯這三種分類演算法之間的異同點

決策樹演算法主要包括id3,c45,cart等演算法,生成樹形決策樹,而樸素貝葉斯是利用貝葉斯定律,根據先驗概率求算後驗概率。

如果訓練集很小,那麼高偏差/低方差分類器(如樸素貝葉斯分類器)要優於低偏差/高方差分類器(如k近鄰分類器),因為後者容易過擬合。然而,隨著訓練集的增大,低偏差/高方差分類器將開始勝出(它們具有較低的漸近誤差),因為高偏差分類器不足以提供准確的模型。

一些特定演算法的優點:

樸素貝葉斯的優點:

超級簡單,你只是在做一串計算。如果樸素貝葉斯(NB)條件獨立性假設成立,相比於邏輯回歸這類的判別模型,樸素貝葉斯分類器將收斂得更快,所以只需要較小的訓練集。而且,即使NB假設不成立,樸素貝葉斯分類器在實踐方面仍然表現很好。

如果想得到簡單快捷的執行效果,這將是個好的選擇。它的主要缺點是,不能學習特徵之間的相互作用(比如,它不能學習出:雖然你喜歡布拉德·皮特和湯姆·克魯斯的電影,但卻不喜歡他們一起合作的電影)。

邏輯回歸的優點:

有許多正則化模型的方法,不需要像在樸素貝葉斯分類器中那樣擔心特徵間的相互關聯性。與決策樹和支撐向量機不同,還可以有一個很好的概率解釋,並能容易地更新模型來吸收新數據(使用一個在線梯度下降方法)。

如果想要一個概率框架(比如,簡單地調整分類閾值,說出什麼時候是不太確定的,或者獲得置信區間),或你期望未來接收更多想要快速並入模型中的訓練數據,就選擇邏輯回歸。

決策樹的優點:

易於說明和解釋(對某些人來說—我不確定自己是否屬於這個陣營)。它們可以很容易地處理特徵間的相互作用,並且是非參數化的,所以你不用擔心異常值或者數據是否線性可分(比如,決策樹可以很容易地某特徵x的低端是類A,中間是類B,然後高端又是類A的情況)。

一個缺點是,不支持在線學習,所以當有新樣本時,你將不得不重建決策樹。另一個缺點是,容易過擬合,但這也正是諸如隨機森林(或提高樹)之類的集成方法的切入點。另外,隨機森林往往是很多分類問題的贏家(我相信通常略優於支持向量機),它們快速並且可擴展,同時你不須擔心要像支持向量機那樣調一堆參數,所以它們最近似乎相當受歡迎。

(5)id3演算法缺點擴展閱讀:

樸素貝葉斯演算法:

設每個數據樣本用一個n維特徵向量來描述n個屬性的值,即:X={x1,x2,…,xn},假定有m個類,分別用C1, C2,…,Cm表示。給定一個未知的數據樣本X(即沒有類標號),若樸素貝葉斯分類法將未知的樣本X分配給類Ci,則一定是

P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i

根據貝葉斯定理:

由於P(X)對於所有類為常數,最大化後驗概率P(Ci|X)可轉化為最大化先驗概率P(X|Ci)P(Ci)。如果訓練數據集有許多屬性和元組,計算P(X|Ci)的開銷可能非常大,為此,通常假設各屬性的取值互相獨立,這樣

先驗概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以從訓練數據集求得。

根據此方法,對一個未知類別的樣本X,可以先分別計算出X屬於每一個類別Ci的概率P(X|Ci)P(Ci),然後選擇其中概率最大的類別作為其類別。

樸素貝葉斯演算法成立的前提是各屬性之間互相獨立。當數據集滿足這種獨立性假設時,分類的准確度較高,否則可能較低。另外,該演算法沒有分類規則輸出。

TAN演算法(樹增強型樸素貝葉斯演算法)

TAN演算法通過發現屬性對之間的依賴關系來降低NB中任意屬性之間獨立的假設。它是在NB網路結構的基礎上增加屬性對之間的關聯(邊)來實現的。

實現方法是:用結點表示屬性,用有向邊表示屬性之間的依賴關系,把類別屬性作為根結點,其餘所有屬性都作為它的子節點。通常,用虛線代表NB所需的邊,用實線代表新增的邊。屬性Ai與Aj之間的邊意味著屬性Ai對類別變數C的影響還取決於屬性Aj的取值。

這些增加的邊需滿足下列條件:類別變數沒有雙親結點,每個屬性有一個類別變數雙親結點和最多另外一個屬性作為其雙親結點。

⑥ 大眾iD3的離地間隙

離地間隙150毫米。

id3最小離地間隙150毫米。大眾ID.3由於新車誕生於純電動平台,所以四門可以更加接近車輛的四角。車身尺寸方面,新車長度為4261mm,車寬1809mm,車高1552mm,軸距為2765mm,能有不錯的乘坐空間。

id3的優缺點

ID3演算法是一種比較簡單的決策樹欄位選擇方法,它的基礎理論清晰,但也有一些缺點。ID3演算法在選擇根節點和各內部節點中的分支屬性時,採用信息增益作為評價標准。信息增益的缺點是傾向於選擇取值較多的屬性,在某些情況下,這類屬性可能不會提供太多有價值的信息。

ID3演算法不能處理具有連續值的屬性,也不能處理具有缺失值的屬性。ID3演算法沒有對決策樹進行修剪的過程,雜訊比較大。

⑦ 決策樹演算法基礎 ID3與C4.5

決策樹演算法基礎:ID3與C4.5
設X是一個取有限個值得離散隨機變數,其概率分布為P(X=xi)=pi, i=1,2,…,n。則隨機變數X的信息熵為
條件熵H(Y|X)表示在已知隨機變數X的條件下隨機變數Y的不確定性。H(Y|X)的計算公式為
所以決策樹分支後信息總熵H(D|A)=P1*H1+P2*H2+...+Pn*Hn,(特徵A條件下D的經驗條件熵)
所以信息增益ΔH=H(D)-H(D|A)
H(D|A)越小,ΔH越大,該特徵A越適合作為當前的決策節點。
選取最佳特徵偽代碼:
計算信息總熵H(D)
遍歷每一個特徵下的關於D的經驗條件熵H(D|A)
計算每一個特徵的信息增益ΔH
將信息增益ΔH最大的特徵作為最佳特徵選為當前決策節點
ID3演算法偽代碼:
如果第一個標簽的數量等於所有的標簽數量,說明這是一個單節點樹,返回這個標簽作為該節點類
如果特徵只有一個,說明這是一個單節點樹,用多數表決法投票選出標簽返回作為該節點類
否則,按信息增益最大的特徵A作為當前決策節點,即決策樹父節點
如果該特徵的信息增益ΔH小於閾值,則用多數表決法投票選出標簽返回作為該節點類
否則,對於該特徵A的每一個可能值ai,將原空間D分割為若干個子空間Di
對於若干個非空子集Di,將每個Di中實例數最大的類作為標記,構建子節點
以Di為訓練空間,遞歸調用上述步驟
由於信息增益存在偏向於選擇取值較多的特徵的問題,而C4.5演算法中,將ID3演算法里的信息增益換成信息增益比,較好地解決了這個問題。
決策樹的優點在於計算量簡單,適合有缺失屬性值的樣本,適合處理不相關的特徵。而缺點是容易過擬合,可以通過剪枝來簡化模型,另外隨機森林也解決了這個問題。

⑧ 信息增益准則為什麼對可取值數目較多的屬性有所偏好

從公式出發,信息增益是整個數據集的經驗熵與特徵A對整個數據集的經驗條件熵的差值,信息增益越大即經驗條件熵越小,那什麼情況下的屬性會有極小的的經驗條件熵呢?舉個極端的例子,如果將身份證號作為一個屬性,那麼,其實每個人的身份證號都是不相同的,也就是說,有多少個人,就有多少種取值,如果用身份證號這個屬性去劃分原數據集,那麼,原數據集中有多少個樣本,就會被劃分為多少個子集,這樣的話,會導致信息增益公式的第二項整體為0,雖然這種劃分毫無意義,但是從信息增益准則來講,這就是最好的劃分屬性。其實從概念來講,就一句話,信息增益表示由於特徵A而使得數據集的分類不確定性減少的程度,信息增益大的特徵具有更強的分類能力。

閱讀全文

與id3演算法缺點相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:579
python員工信息登記表 瀏覽:377
高中美術pdf 瀏覽:161
java實現排列 瀏覽:513
javavector的用法 瀏覽:982
osi實現加密的三層 瀏覽:233
大眾寶來原廠中控如何安裝app 瀏覽:916
linux內核根文件系統 瀏覽:243
3d的命令面板不見了 瀏覽:526
武漢理工大學伺服器ip地址 瀏覽:149
亞馬遜雲伺服器登錄 瀏覽:525
安卓手機如何進行文件處理 瀏覽:71
mysql執行系統命令 瀏覽:930
php支持curlhttps 瀏覽:143
新預演算法責任 瀏覽:444
伺服器如何處理5萬人同時在線 瀏覽:251
哈夫曼編碼數據壓縮 瀏覽:426
鎖定伺服器是什麼意思 瀏覽:385
場景檢測演算法 瀏覽:617
解壓手機軟體觸屏 瀏覽:350