A. 怎樣來拯救我的高一數學。
我要告訴你的是,數學是一定要每天做題的,但是題目做的不在於多,而是要經典,另外,最最最重要的一點是反思,每做完一道題都要反思,這樣你的數學才能有本質地提升,希望對你有幫助。有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題。有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題。有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習。從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,32=6等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在整式的運算一章中,整式的乘法公式是以整式的乘法法則為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
B. 「小數乘法」的計演算法則是什麼
小數乘法法則是:
1、按整數乘法的法則算出積;
2、再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3、得數的小數部分末尾有0,一般要把0去掉。
除數是小數的小數除法法則:
1、先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2、然後按照除數是整數的小數除法來除。
「×」是乘號,乘號前面和後面的數叫做因數,「=」是等於號,等於號後面的數叫做積。
10(因數) ×(乘號) 200(因數) =(等於號) 2000(積)因數也叫乘數。
(2)拯救乘法的計演算法則擴展閱讀:
古巴比倫數學使用60進制,考古發現的一塊古巴比倫泥板證實了這一點。這塊泥板上有一個正方形,對角線上有四個數字1, 24, 51, 10。最初發現這塊泥板時人們並不知道這是什麼意思,後來某牛人驚訝地發現,如果把這些數字當作60進制的三位小數的話,得到的正好是單位正方形對角線長度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296...
這說明古巴比倫已經掌握了勾股定理。60進制的使用為古巴比倫數學的乘法運算發展帶來了很大的障礙,因為如果你要背59-59乘法口訣表的話,至少也得背1000多項,等你把它背完了後我期末論文估計都已經全寫完了。
另一項考古發現告訴了我們古巴比倫數學的乘法運算如何避免使用乘法表。考古學家們發現一些泥板上刻有60以內的平方表,利用公式ab = [(a+b)^2 - a^2 - b^2]/2 可以迅速查表得到ab的值。
另一個公式則是ab = [(a+b)^2 - (a-b)^2]/4,這說明兩個數相乘只需取它們的和平方與差平方的差,再兩次取半即可。平方數的頻繁使用很可能加速了古巴比倫人發現勾股定理的過程。
C. 乘法的法則是什麼
乘法法則是:兩數相乘,同號得正,異號得負,並把絕對值相乘。
乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。
一位數的乘法法則。兩個一位數相乘,可根據乘法定義用加法計算,通常可利用乘法表直接得出任意兩個一位數的積。多位數的乘法法則。依次用乘數的各個數位上的數,分別去乘被乘數的每一數位上的數,然後將乘得的積加起來。
乘法的運算定律:
相乘交換因數的位置積不變的定律,乘法運算定律,也叫乘法的性質,有交換律,結合律,分配律,應用這些運算定律,可以使部分乘法題計算簡便。
1、乘法交換律,乘法交換律是兩個數相乘,交換因數的位置,它們的積不變。則稱:交換律。
2、乘法結合律,三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。
3、乘法分配律,兩個數的和(差)同一個數相乘,可以先把兩個加數(減數)分別同這個數相乘,再把兩個積相加(減),積不變。
D. 乘法計算方法
整數乘法的計演算法則:
(1)數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來.
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0.)
例如:
E. 乘法法則是什麼
乘法法則如下:
1、單項式多項式
單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。
注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。
2、多項式法則
多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式);(a+b)²=a²+b²+2ab;(a-b)²=a²+b²-2ab。
整數乘法法則兒歌:
1、一位數乘法法則
整數乘法低位起,一位數乘法一次積。
個位數乘得若干一,積的末位對個位。
計算準確對好位,乘法口訣是根據。
2、兩位數乘法法則
整數乘法低位起,兩位數乘法兩次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
計算準確對好位,兩次乘積加一起。
3、多位數乘法法則
整數乘法低位起,幾位數乘法幾次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
百位數乘得若干百,積的末位對百位。
計算準確對好位,幾次乘積加一起。
4、因數末尾有0的乘法法則
因數末尾若有0,寫在後面先不乘。
乘完積補上0,有幾個0寫幾個0。
F. 乘法法則都有哪些
乘法的計演算法則:
1、多位數乘法法則整數乘法低位起,幾位數乘法幾次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
百位數乘得若干百,積的末位對百位計算準確對好位,幾次乘積加一起。
2、因數末尾有0的乘法法則因數末尾若有0,寫在後面先不乘,乘完積補上0,有幾個0寫幾個0。
乘法的計演算法則:
數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊。
凡是被乘數的各位數遇到7、8、9時,其方法為:
是9:本位減補數-次,下位加補數一次。
被乘數是8:本位減補數一次,下位加補數二次。
是7:本位減補數一次,下位加補數三次。
例如:987x879=867573(879的補數是121)算序:被乘數個位7的本位減121,下位加363得98-6153。被乘數-+位8的本位減121,下位加242得9-76473。被乘數百位9的本位減121,下位加121得867573(積)。